scholarly journals Application of PZT Technology and Clustering Algorithm for Debonding Detection of Steel-UHPC Composite Slabs

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2953 ◽  
Author(s):  
Banfu Yan ◽  
Qiqi Zou ◽  
You Dong ◽  
Xudong Shao

A lightweight composite bridge deck system composed of steel orthotropic deck stiffened with thin Ultra-High Performance Concrete (UHPC) layer has been proposed to eliminate fatigue cracks in orthotropic steel decks. The debonding between steel deck and UHPC layer may be introduced during construction and operation phases, which could cause adverse consequences, such as crack-induced water invasion and distinct reduction of the shear resistance. The piezoelectric lead zirconate titanate (PZT)-based technologies are used to detect interfacial debonding defects between the steel deck and the UHPC layer. Both impedance analysis and wave propagation method are employed to extract debonding features of the steel-UHPC composite slab with debonding defect in different sizes and thicknesses. Experimental tests are performed on two steel-UHPC composite slabs and a conventional steel-concrete composite deck. Additionally, an improved Particle Swarm Optimization (PSO)-k-means clustering algorithm is adopted to obtain debonding patterns based on the feature data set. The laboratory tests demonstrate that the proposed approach provides an effective way to detect interfacial debonding of steel-UHPC composite deck.

Author(s):  
Banfu Yan ◽  
Qiqi Zou ◽  
You Dong ◽  
Xudong Shao

A lightweight composite bridge deck system composed of steel orthotropic deck stiffened with thin Ultra-High Performance Concrete (UHPC) layer is developed to eliminate fatigue cracks in orthotropic steel decks. During the construction and operation period of the bridge, the debonding between the steel deck and the UHPC layer may introduce the several issues, such as crack-induced water invasion and distinct reduction of the shear resistance. In the study, an effective and novel non-destructive interface condition monitoring approach using piezoelectric lead zirconate titanate (PZT)-based technologies is proposed to detect interfacial delamination between steel deck and UHPC layer. Experimental tests are performed on several steel-UHPC composite slabs and a conventional steel-concrete composite slab. The thin styrofoam sheets with different sizes and thicknesses are set on different locations of the steel deck as the artificial debondings. The PZT ceramic patches are bonded on the surfaces of the steel deck and UHPC layer as the actuators/sensors. An improved PSO (Particle Swarm Optimization)-K-means clustering algorithms is proposed to obtain the debonding patterns based on the feature data set. The laboratory tests demonstrate that the proposed approach provides an effective and accurate way to detect interfacial debonding of steel-UHPC composite slab.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 253 ◽  
Author(s):  
Li Su ◽  
Shilei Wang ◽  
Yan Gao ◽  
Jianlei Liu ◽  
Xudong Shao

A novel ultra high performance concrete (UHPC) layer composite orthotropic steel deck was adopted in the construction of a new bridge in China to improve the fatigue performance of the orthotropic steel deck plate and reduce the disease of surface wearing layer. In situ experiments were conducted to study the UHPC layer’s impact on the behavior of the orthotropic steel deck. The test vehicle loads were applied on the deck plate before and after UHPC layer paving, the stresses where fatigue cracks usually occur and the deflections of critical sections were measured. The test results verified that the UHPC composite steel deck system could significantly reduce the stress of the rib-to-deck connection region and the stress at the bottom toe of rib-to-diaphragm weld. In addition, it slightly influenced the performance of U shape rib, girder web-to-deck and diaphragm cutout.


2021 ◽  
Author(s):  
Faheem Abdul

Many research works have been conducted on the behavior of composite slabs with profiled steel deck to study the longitudinal shear bond resistance using the m-k method. In this study, experimental investigations are conducted to evaluate the shear bond characeristics of composite slabs. 15 composite slabs are tested to study the effect of different high performance concrete (HPC) mixes namely engineered cementitious composites (ECC) and self-consolidating concrete (SCC), diverse profile sheets (with embossments or without embossments) and variable shear span on load-deflection characteristics, stress-strain development in concrete/steel, cracking/crack propagation and failure modes. The values of shear bond parameters (m and k) derived from the test results can be used for the design of composite slabs.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Nhat-Duc Hoang ◽  
Anh-Duc Pham ◽  
Quoc-Lam Nguyen ◽  
Quang-Nhat Pham

This research carries out a comparative study to investigate a machine learning solution that employs the Gaussian Process Regression (GPR) for modeling compressive strength of high-performance concrete (HPC). This machine learning approach is utilized to establish the nonlinear functional mapping between the compressive strength and HPC ingredients. To train and verify the aforementioned prediction model, a data set containing 239 HPC experimental tests, recorded from an overpass construction project in Danang City (Vietnam), has been collected for this study. Based on experimental outcomes, prediction results of the GPR model are superior to those of the Least Squares Support Vector Machine and the Artificial Neural Network. Furthermore, GPR model is strongly recommended for estimating HPC strength because this method demonstrates good learning performance and can inherently express prediction outputs coupled with prediction intervals.


2021 ◽  
Author(s):  
Faheem Abdul

Many research works have been conducted on the behavior of composite slabs with profiled steel deck to study the longitudinal shear bond resistance using the m-k method. In this study, experimental investigations are conducted to evaluate the shear bond characeristics of composite slabs. 15 composite slabs are tested to study the effect of different high performance concrete (HPC) mixes namely engineered cementitious composites (ECC) and self-consolidating concrete (SCC), diverse profile sheets (with embossments or without embossments) and variable shear span on load-deflection characteristics, stress-strain development in concrete/steel, cracking/crack propagation and failure modes. The values of shear bond parameters (m and k) derived from the test results can be used for the design of composite slabs.


Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


2021 ◽  
pp. 016555152110184
Author(s):  
Gunjan Chandwani ◽  
Anil Ahlawat ◽  
Gaurav Dubey

Document retrieval plays an important role in knowledge management as it facilitates us to discover the relevant information from the existing data. This article proposes a cluster-based inverted indexing algorithm for document retrieval. First, the pre-processing is done to remove the unnecessary and redundant words from the documents. Then, the indexing of documents is done by the cluster-based inverted indexing algorithm, which is developed by integrating the piecewise fuzzy C-means (piFCM) clustering algorithm and inverted indexing. After providing the index to the documents, the query matching is performed for the user queries using the Bhattacharyya distance. Finally, the query optimisation is done by the Pearson correlation coefficient, and the relevant documents are retrieved. The performance of the proposed algorithm is analysed by the WebKB data set and Twenty Newsgroups data set. The analysis exposes that the proposed algorithm offers high performance with a precision of 1, recall of 0.70 and F-measure of 0.8235. The proposed document retrieval system retrieves the most relevant documents and speeds up the storing and retrieval of information.


2016 ◽  
Vol 827 ◽  
pp. 215-218 ◽  
Author(s):  
David Čítek ◽  
Milan Rydval ◽  
Jiří Kolísko

Research in the Ultra-High Performance Concrete applications field is very important. Current experiences shows that the structure design should be optimize due to relatively new fine-grained cement-based Hi-Tech material with excellent mechanical and durability properties. It is not sure if some of the volumetric changes like creep or shrinkage has or has not an impact on an advantage for the construction and for the structure design. The effect of the shrinkage and creep of common used concretes are well known and well described at publications but the effect of volumetric changes of the UHPC is mostly unknown because of the fact that some of experimental tests are long term and the development of UHPC is still in its basics. A lot of works are focused on a basic mechanical properties and durability tests.


2016 ◽  
Vol 711 ◽  
pp. 1027-1034 ◽  
Author(s):  
Adriano Reggia ◽  
Sara Sgobba ◽  
Fabio Macobatti ◽  
Cristina Zanotti ◽  
Fausto Minelli ◽  
...  

After more than fifty years from the opening of the largely discussed “Autostrada del Sole” Highway in 1964, the infrastructure system in Italy appears marked by the passing of time, similarly to what observed in several other countries worldwide. The great heterogeneity of the Italian landscape has determined a great variety of construction types, such as large span concrete bridges over the northern rivers and large arch concrete bridges over the valleys of the central region. Increment of vehicle traffic and new seismic regulations are setting new requirements to adapt the existing infrastructure, which should be otherwise replaced. Moreover, reinforced concrete (RC) aging and deterioration have led to structural and material degradation, including severe cracking and corrosion. Specialized materials such as High Performance Concrete (HPC) could represent a viable convenient solution for repairing, strengthening and retrofitting of RC structures as both structural capacity and durability can be refurbished. However, alongside high mechanical performance, HPC is characterized by a high cracking sensitivity at very early age, due to its high stiffness and shrinkage. Restrained shrinkage cracking, particularly significant in repaired structures where the existing concrete generates a considerable restraint against the free movement of the repair material, may represent a limit to the effective application of these materials. For this reason, shrinkage compatibility of HPC with the existing concrete substrate needs to be experimentally and numerically assessed. A study is herein presented where, based on experimental tests, different numerical models are developed and compared to assess and eventually minimize the risk of shrinkage cracking in bridge piers strengthened with HPC.


2009 ◽  
Vol 405-406 ◽  
pp. 77-82
Author(s):  
Gai Fei Peng ◽  
Zhan Qi Guo ◽  
Piet Stroeven ◽  
Ri Gao ◽  
Guang Hua Huang

A literature review was carried out to identify advances in research on workability of fresh concrete via both experimental tests and modeling, especially high performance concrete and self-compacting concrete. It is concluded that, in order to achieve better understanding of fresh concrete, especially self-compacting concrete (SCC) and high-performance concrete (HPC), a clear methodology of research should be established as the first step. It is suggested that there is no unique workability test method suitable for all the range of fluidity of fresh concrete, and a specific method should be identified for a proper range of fluidity. As to the relationship between fluidity of concrete and that of paste, future research can be conducted in two aspects, i.e. one is the influence of the quantity of paste in concrete, and another is the influence of fluidity of paste affected by a couple of factors.


Sign in / Sign up

Export Citation Format

Share Document