scholarly journals Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation

2020 ◽  
Vol 12 (19) ◽  
pp. 7961 ◽  
Author(s):  
Shady Attia

Climate responsive design can amplify the positive environmental effects necessary for human habitation and constructively engage and reduce the energy use of existing buildings. This paper aims to assess the role of the thermal adaptation design strategy on thermal comfort perception, occupant behavior, and building energy use in twelve high-performance Belgian households. Thermal adaptation involves thermal zoning and behavioral adaptation to achieve thermal comfort and reduce energy use in homes. Based on quantitative and qualitative fieldwork and in-depth interviews conducted in Brussels, the paper provides insights on the impact of using mechanical systems in twelve newly renovated nearly- and net-zero energy households. The article calls for embracing thermal adaptation as a crucial design principle in future energy efficiency standards and codes. Results confirm the rebound effect in nearly zero energy buildings and the limitation of the current building energy efficiency standards. The paper offers a fresh perspective to the field of building energy efficiency that will appeal to researchers and architects, as well as policymakers.

Author(s):  
George A. Mertz ◽  
Gregory S. Raffio ◽  
Kelly Kissock

Environmental and resource limitations provide increased motivation for design of net-zero energy or net-zero CO2 buildings. The optimum building design will have the lowest lifecycle cost. This paper describes a method of performing and comparing lifecycle costs for standard, CO2-neutral and net-zero energy buildings. Costs of source energy are calculated based on the cost of photovoltaic systems, tradable renewable certificates, CO2 credits and conventional energy. Building energy simulation is used to determine building energy use. A case study is conducted on a proposed net-zero energy house. The paper identifies the least-cost net-zero energy house, the least-cost CO2 neutral house, and the overall least-cost house. The methodology can be generalized to different climates and buildings. The method and results may be of interest to builders, developers, city planners, or organizations managing multiple buildings.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Frederick Paige ◽  
Philip Agee ◽  
Farrokh Jazizadeh

AbstractThe behaviors of building occupants have continued to perplex scholars for years in our attempts to develop models for energy efficient housing. Building simulations, project delivery approaches, policies, and more have fell short of their optimistic goals due to the complexity of human behavior. As a part of a multiphase longitudinal affordable housing study, this dataset represents energy and occupant behavior attributes for 6 affordable housing units over nine months in Virginia, USA which are not performing to the net-zero energy standard they were designed for. This dataset provides researchers the ability to analyze the following variables: energy performance, occupant behaviors, energy literacy, and ecological perceptions. Energy data is provided at a 1 Hz sampling rate for four circuits: main, hot water heater, dryer, and HVAC. Building specifications, occupancy, weather data, and neighboring building energy use data are provided to add depth to the dataset. This dataset can be used to update building energy use models, predictive maintenance, policy frameworks, construction risk models, economic models, and more.


2020 ◽  
Vol 4 (1) ◽  
pp. 73
Author(s):  
Asep Yudi Permana ◽  
Karto Wijaya ◽  
Hafiz Nurrahman ◽  
Aathira Farah Salsabilla Permana

Abstract: Energy efficiency is a top priority in design, because design errors that result in wasteful energy will impact operational costs as long as the building operates. The opening protection in the facade should be adjusted according to their needs, for optimum use of sky light. Inhibiting the entry of solar heat into the room through the process of radiation, conduction or convection, optimum use of sky light and efforts to use building skin elements for shading are very wise efforts for energy savings. House construction planning must be careful and consider many things, including: physical potential. Physical potential is a consideration of building materials, geological conditions and local climate. Related to the issue of global warming that occurs in modern times, climate is a major consideration that needs to be resolved.The purpose of building design, especially in residential homes aims to create amenities for its inhabitants. Amenities are achieved through physical comfort, be it spatial comfort, thermal comfort, auditory comfort, or visual comfort.Energy waste is also caused by building designs that are not well integrated and even wrong and are not responsive to aspects of function, and climate. This is worsened by the tendency of the designers to prioritize aesthetic aspects (prevailing trends). The issue of green concepts and energy consumption efficiency through the Net Zero-Energy Buildings (NZE-Bs) program from the housing sector as a response to tackling global warming is already familiar in Indonesia, although its application has not yet been found significantly. Green concepts offered by housing developers are often merely marketing tricks and are not realized and grow the responsibility of the residents to look after them. Due to the lack of understanding of the green concept, housing developers tend to offer more a beautiful and green housing environment, not the actual green concept.Keyword: Socio-culture, Energy efficiency, Energy consumption, Environment. The green conceptAbstrak: Efisiensi energi merupakan prioritas utama dalam disain, karena kesalahan disain yang berakibat boros energi akan berdampak terhadap biaya opersional sepanjang bangunan tersebut beroperasi. Pelindung bukaan pada fasade sebaiknya dapat diatur sesuai kebutuhannya, untuk pemanfaatan terang langit seoptimal mungkin. Penghambatan masuknya panas matahari kedalam ruangan baik melalui proses radiasi, konduksi atau konveksi, pemanfaatan terang langit seoptimal mungkin serta upaya pemanfaatan elemen kulit bangunan untuk pembayangan merupakan upaya yang sangat bijaksana bagi penghematan energi. Perencanaan pembangunan rumah harus cermat dan mempertimbangkan banyak hal, antara lain: potensi fisik. Potensi fisik adalah pertimbangan akan bahan bangunan, kondisi geologis dan iklim setempat. Terkait dengan isu pemanasan global yang terjadi pada masa modern ini, iklim menjadi sebuah pertimbangan utama yang perlu diselesaikan.Tujuan desain bangunan khususnya pada rumah tinggal bertujuan menciptakan amenities bagi penghuninya. Amenities dicapai melalui kenyamanan fisik, baik itu spatial comfort, thermal comfort, auditory comfort, maupun visual comfort.Pemborosan energi juga disebabkan oleh desain bangunan yang tidak terintegrasi dengan baik bahkan salah dan tidak tanggap terhadap aspek fungsi, serta iklim. Hal tersebut diperparah yang kecenderungan para perancang lebih mementingkan aspek estetis (tren yang berlaku). Isu konsep hijau dan efisiensi konsumsi energi melalui program Net Zero-Energy Buildings (NZE-Bs) dari sektor perumahan sebagai respon untuk menanggulangi pemanasan global sudah tidak asing di Indonesia, walaupun penerapannya masih belum dapat ditemukan secara signifikan. Konsep hijau yang ditawarkan oleh pengembang perumahan seringkali hanya sebagai trik pemasaran belaka dan tidak diwujudkan serta ditumbuhkan tanggung jawab para penghuni untuk menjaganya. Akibat minimnya pemahaman mengenai konsep hijau tersebut, para pengembang perumahan cenderung lebih banyak menawarkan lingkungan perumahan yang asri dan hijau, bukan konsep hijau yang sebenarnya.Kata Kunci: Sosio-kultur, Efisiensi Energi, Konsumsi energi, Lingkungan, Konsep Hijau


Biomimetics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 50
Author(s):  
Negin Imani ◽  
Brenda Vale

The initial aim of the research was to develop a framework that would enable architects to look for thermoregulation methods in nature as inspiration for designing energy efficient buildings. The thermo-bio-architectural framework (ThBA) assumes designers will start with a thermal challenge in a building and then look in a systematic way for how this same issue is solved in nature. The tool is thus a contribution to architectural biomimicry in the field of building energy use. Since the ThBA was created by an architect, it was essential that the biology side of this cross-disciplinary tool was validated by experts in biology. This article describes the focus group that was conducted to assess the quality, inclusiveness, and applicability of the framework and why a focus group was selected over other possible methods such as surveys or interviews. The article first provides a brief explanation of the development of the ThBA. Given the focus here is on its validation, the qualitative data collection procedures and analysis results produced by NVivo 12 plus through thematic coding are described in detail. The results showed the ThBA was effective in bridging the two fields based on the existing thermal challenges in buildings, and was comprehensive in terms of generalising biological thermal adaptation strategies.


2012 ◽  
Vol 575 ◽  
pp. 122-125
Author(s):  
Juan Wang

Inner Mongolia mostly belongs to the rural residence building, no any relevant construction standard and building energy efficiency standards. Most of the farmers in build houses without considering building energy problems. This article through to a rural residential energy conservation calculation and analysis, and obtain the energy-saving index.


2020 ◽  
pp. 1420326X2096115
Author(s):  
Jaime Resende ◽  
Marta Monzón-Chavarrías ◽  
Helena Corvacho

Buildings account for 34% of world energy consumption and about half of electricity consumption. The nearly/Net Zero Energy Building (nZEB/NZEB) concepts are regarded as solutions for minimizing this problem. The countries of Southern Europe, which included the nZEB concept recently in their regulatory requirements, have both heating and cooling needs, which adds complexity to the problem. Brazil may benefit from their experience since most of the Brazilian climate zones present significant similarities to the Southern European climate. Brazil recently presented a household energy consumption increase, and a growing trend in the use of air conditioning is predicted for the coming decades. Simulations with various wall and roof solutions following the Brazilian Performance Standard were carried out in a low standard single-family house in three different climate zones in order to evaluate thermal comfort conditions and energy needs. Results show that in milder climate zones, achieving thermal comfort with a low energy consumption is possible, and there is a great potential to achieve a net zero-energy balance. In the extreme hot climate zone, a high cooling energy consumption is needed to provide thermal comfort, and the implementation of a nearly zero-energy balance may be more feasible.


Author(s):  
Owen Betharte ◽  
Hamidreza Najafi ◽  
Troy Nguyen

The growing world-wide energy demand and environmental considerations have attracted immense attention in building energy efficiency. Climate zone plays a major role in the process of decision making for energy efficiency projects. In the present paper, an office building located in Melbourne, FL is considered. The building is built in 1961 and the goal is to identify and prioritize the potential energy saving opportunities and retrofit the existing building into a Net-Zero Energy Building (NZEB). An energy assessment is performed and a baseline model is developed using eQUEST to simulate the energy performance of the building. Several possible energy efficiency improvement scenarios are considered and assessed through simulation including improving insulation on the walls and roof, replacing HVAC units and upgrade their control strategies, use of high efficiency lighting, and more. Selected energy efficiency improvement recommendations are implemented on the building model to achieve the lowest energy consumption. It is considered that photovoltaic (PV) panels will be used to supply the energy demand of the building. Simulations are also performed to determine the number of required PV panels and associated cost of the system is estimated. The results from this paper can help with the decision making regarding retrofit projects for NZEB in humid subtropical climate.


Sign in / Sign up

Export Citation Format

Share Document