scholarly journals Investigation of vibration induced by moving cranes in high-tech factories

2019 ◽  
Vol 39 (1) ◽  
pp. 84-97 ◽  
Author(s):  
SH Ju ◽  
HH Kuo ◽  
SW Yu ◽  
SH Ni

A finite element model was developed to simulate the crane induced vibration on the floor of high-tech factories, in which the mesh include beam, plate, spring-damper, and moving wheel elements. The finite element results were first compared with the experimental measurements in good agreement. The parametric studies were then performed to study the vibration behavior of high-tech factories due to the effects of rail irregularities, slab depth, and crane speed. The rail irregularities induce the vibration of the crane and slab at their natural frequencies, and both rail irregularities and the crane acceleration induce the crane rotation in its natural frequency, so that smoothing the wheel and rail should be the first priority to decrease slab vibration. The crane speed is another important issue to influence slab vibration, which decreases with the reduction of the crane speed clearly from the parametric study. Thus, decreasing the crane speed to reduce slab vibration is an alternative, and experiments are caused to find the optimal crane speed and acceleration. The crane induced vibration is the relatively largest and smallest at the column location and beam center, respectively. Therefore, increasing the slab and beam depth to decrease the slab vibration induced by the moving crane is an additional option.

2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


2014 ◽  
Vol 607 ◽  
pp. 405-408 ◽  
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Quan Cheng Peng

The gear-shaft-bearing-housing coupled finite element model of marine gearbox was established by using the truss element, the spring element and the tetrahedral element. The modal of gearbox was analyzed by using the ANSYS software. Then through the experimental modal analysis, the natural frequencies of gearbox are obtained. Compare the experimental results with the numerical results, it shows good agreement.


2015 ◽  
Vol 727-728 ◽  
pp. 578-582
Author(s):  
Fei Liu ◽  
Wei Liang He

The stress distribution and modal behavior of a space inflatable torus was investigated by nonlinear finite element numerical method. This paper focused on the effect of follower pressure on the modal analysis of the torus, including the effect of configuration change and follower pressure stiffness, and focused on validating the follower pressure stiffness FEM model and its applicability to modal analysis. Research shows that the changed configuration slightly increases the natural frequencies. The follower pressure stiffness significantly reduces the natural frequencies and changes mode shapes order. The modal results are in good agreement with the corresponding shell theory solutions, indicating that the finite element model of the follower pressure stiffness for the inflatable structure modal analysis in this paper is accurate enough and reasonable.


2021 ◽  
pp. 107754632110267
Author(s):  
Jiandong Huang ◽  
Xin Li ◽  
Jia Zhang ◽  
Yuantian Sun ◽  
Jiaolong Ren

The dynamic analysis has been successfully used to predict the pavement response based on the finite element modeling, during which the stiffness and mass matrices have been established well, whereas the method to determine the damping matrix based on Rayleigh damping is still under development. This article presents a novel method to determine the two parameters of the Rayleigh damping for dynamic modeling in pavement engineering. Based on the idealized shear beam model, a more reasonable method to calculate natural frequencies of different layers is proposed, by which the global damping matrix of the road pavement can be assembled. The least squares method is simplified and used to calculate the frequency-independent damping. The best-fit Rayleigh damping is obtained by only determining the natural frequencies of the two modal. Finite element model and in-situ field test subjected by the same falling weight deflectometer pulse loads are performed to validate the accuracy of this method. Good agreements are noted between simulation and field in-situ results demonstrating that this method can provide a more accurate approach for future finite element modeling and back-calculation.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Jungkyu Lee ◽  
Youfeng Zhang ◽  
Robert M. Crone ◽  
Narayanan Ramakrishnan ◽  
Andreas A. Polycarpou

Use of nanometer thin films has received significant attention in recent years because of their advantages in controlling friction and wear. There have been significant advances in applications such as magnetic storage devices, and there is a need to explore new materials and develop experimental and theoretical frameworks to better understand nanometer thick coating systems, especially wear characteristics. In this work, a finite element model is developed to simulate the sliding wear between the protruded pole tip in a recording head (modeled as submicrometer radius cylinder) and a rigid asperity on the disk surface. Wear is defined as plastically deformed asperity and material yielding. Parametric studies reveal the effect of the cylindrical asperity geometry, material properties, and contact severity on wear. An Archard-type wear model is proposed, where the wear coefficients are directly obtained through curve fitting of the finite element model, without the use of an empirical coefficient. Limitations of such a model are also discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hamdi Alper Özyiğit ◽  
Mehmet Yetmez ◽  
Utku Uzun

As there is a gap in literature about out-of-plane vibrations of curved and variable cross-sectioned beams, the aim of this study is to analyze the free out-of-plane vibrations of curved beams which are symmetrically and nonsymmetrically tapered. Out-of-plane free vibration of curved uniform and tapered beams with additional mass is also investigated. Finite element method is used for all analyses. Curvature type is assumed to be circular. For the different boundary conditions, natural frequencies of both symmetrical and unsymmetrical tapered beams are given together with that of uniform tapered beam. Bending, torsional, and rotary inertia effects are considered with respect to no-shear effect. Variations of natural frequencies with additional mass and the mass location are examined. Results are given in tabular form. It is concluded that (i) for the uniform tapered beam there is a good agreement between the results of this study and that of literature and (ii) for the symmetrical curved tapered beam there is also a good agreement between the results of this study and that of a finite element model by using MSC.Marc. Results of out-of-plane free vibration of symmetrically tapered beams for specified boundary conditions are addressed.


2012 ◽  
Vol 226-228 ◽  
pp. 281-284
Author(s):  
Li Da Zhu ◽  
Xiao Bang Wang ◽  
Tiao Biao Yu ◽  
Wan Shan Wang

The dynamic characteristics of machine tool may directly affect its machining capability, which is analyzed to improve the machining precision and efficiency. In this paper, the 3D finite element model of main components turn-milling center is established by using ANSYS software, and then spindle box of turn-milling center is analyzed and optimized; the natural frequencies and vibration models are obtained after analysis, which guarantee the design requirement of the machining center. Therefore it is significant to improve the design quality of machining center by using FEA software in the design process.


2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


2011 ◽  
Vol 480-481 ◽  
pp. 1496-1501
Author(s):  
Liu Hui

In order to study the dynamic characteristics of a super-long-span cable-stayed bridge which is semi-floating system, the spatial finite element model of this cable-stayed bridge was established in ANSYS based on the finite element theory.Modal solution was conducted using subspace iteration method, and natural frequencies and vibration modes were obtained.The dynamic characteristics of this super-long-span cable-stayed bridge were then analyzed.Results showed that the super-long-span cable-stayed bridge of semi-floating system has long basic cycle, low natural frequencies, dense modes and intercoupling vibration modes.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


Sign in / Sign up

Export Citation Format

Share Document