Three-dimensional dynamic modeling and analytical method investigation of planetary gears for vibration prediction

Author(s):  
Lina Zhang ◽  
Changchun Wang ◽  
Wenke Bao ◽  
Fuxiang Xie

The investigation of planetary gear dynamics including dynamic modeling and dynamic response analysis is a crucial approach in vibration reduction of industrial power transmission systems. In this paper, the nonlinear, time-varying dynamic model of a spur planetary gear system under consideration of the translational and rotational motions is investigated. The three subsystems for sun-planet, ring-planet and planet-carrier are analyzed subsequently, and the dynamic equations of the system are obtained. Moreover, different planet phasing and spacing configurations can be described by means of this model. In addition, the dynamic response is investigated by the multiple-scale method. First, the analytical solutions of the primary, superharmonic and subharmonic resonances are obtained. Then the frequency amplitude curves of different resonance modes are compared and the influence of some parameters on the vibration amplitude is studied. Meanwhile, the accuracy of the analytical solutions is evaluated by the numerical integration simulations. The results show that the frequency-amplitude curves of the primary and superharmonic resonance are similar in shape, the three solutions coexist, and the types of unstable solutions and stable solutions are identical. Furthermore, the softening nonlinearity of the subharmonic amplitude-frequency curve is more obvious under the three-dimensional model. This research is an important development of three-dimensional dynamic modeling and vibration prediction of planetary gears, and also improves the efficiency and accuracy of dynamic response calculation.

2015 ◽  
Vol 789-790 ◽  
pp. 311-315 ◽  
Author(s):  
Yan Li Cheng ◽  
Zheng Ming Xiao ◽  
Li Rong Huan ◽  
Fu Chen

The speed increasing gearbox is the key part of the wind turbine and its role is to transmit power which is generated by wind turbines to the generator through the gear system. The single-stage planetary gears train system is commonly used in the semi-direct drive wind turbines. In this paper Pro/E is used to establish the three-dimensional model of the speed increasing planetary gear system of the semi-direct drive wind turbine. Motion pairs, drive and load of the model are added by ADAMS. Angular velocity change rule of the parts is obtained. The change rules of the mesh force of the planetary gears, ring and sun gear can be obtained through the dynamic simulation and analysis using the contact algorithm. These are useful to study the vibration and noise of the system.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


2014 ◽  
Vol 538 ◽  
pp. 79-82
Author(s):  
Zhi Dong Huang ◽  
Yun Pu Du ◽  
Han Xiao Li ◽  
Xiu Li Sun ◽  
Yu Wang

The characteristics of oval gear is analyzed. The parameters of oval gear are chosen and calculated. The three-dimensional solid modeling of oval gear is achieved. The dynamic model of oval gear is established by FEM and modal analysis of oval gear is investigated. The natural frequency and major modes of the first six orders are clarified. The method and the result facilitate the dynamic design and dynamic response analysis of oval gear.


2013 ◽  
Vol 444-445 ◽  
pp. 1295-1300 ◽  
Author(s):  
Hua Li ◽  
Rui Li ◽  
Yue Chen ◽  
De Xiang Zhu

Suspenders are main force-transmission components of half-through and through arch bridge, It is crucial for safety of bridges to its reliability and durability. Safety of the arch bridge will change when a suspender sudden failure, and affect the safety of the structure. Selecting a through arch bridge in Yunnan Province as the research object, it based on the three-dimensional finite element, this paper studied the dynamic response of arch bridge suspenders sudden failure on the failure-safety theory.


2014 ◽  
Vol 511-512 ◽  
pp. 683-686
Author(s):  
Lucia Pascale ◽  
Paul Ciprian Patic

This paper presents the dynamic modeling of a new variant of helical planetary gear proposed by the authors, generated by the Vaucanson`s planetary mechanism. This model can be apply successfully helping a robotic arm in motion. It is considered that the gear made connects between a motor and a pump, whose mechanical properties are known. Using Matlab-Simulink is setting the equations of motion and dynamic response, both in premise neglect friction and the premise of considering friction.


2013 ◽  
Vol 423-426 ◽  
pp. 1516-1519
Author(s):  
Zhi Dong Huang ◽  
An Min Hui ◽  
Guang Yang ◽  
Rui Yang Li

The characteristics of four-order elliptical gear is analyzed. The parameters of four-order elliptical gear are chosen and calculated. The three-dimensional solid modeling of four-order elliptical gear is achieved. The dynamic model of four-order elliptical gear is established by finite element method and modal analysis of four-order elliptical gear is investigated. The natural frequencies and major modes of the first six orders are clarified. The method and the result facilitate the dynamic design and dynamic response analysis of high-order elliptical gear.


Robotica ◽  
2014 ◽  
Vol 33 (08) ◽  
pp. 1671-1685 ◽  
Author(s):  
Jian-Wei Lu ◽  
Xiao-Ming Sun ◽  
Alexander F. Vakakis ◽  
Lawrence A. Bergman

SUMMARYThe dynamic modeling of a flexible single-link manipulator arm with consideration of backlash in the planetary gear reducer at the joint is presented, and the influence of backlash on the dynamic response of the system is evaluated. A 2K-H planetary gear reducer with backlash was employed as an example to discuss the dynamic modeling of the sub-model of the planetary gear reducer, and the sub-model of the planetary gear reducer was established based on the lumped mass method. The flexible manipulator was regarded as an Euler--Bernoulli beam, and the dynamic model of the flexible manipulator arm with backlash in the planetary gear reducer was determined from Lagrange's equations. Based on the this model, the influence of the backlash in the planetary gear reducer and excitation frequency on the dynamic response of the system were evaluated through simulation, and the results showed that the dynamic response of the system is sensitive to the backlash and the excitation frequency simultaneously, which provides a theoretical foundation for improvement of dynamic modeling and control of the flexible manipulator arm.


Sign in / Sign up

Export Citation Format

Share Document