Planar dynamic modelling of round link chain drives considering the irregular polygonal action and guide rail

Author(s):  
Pengfei Yuan ◽  
Baiyan He ◽  
Lianhong Zhang

Round link chain drives can be sorted into the transmission, parallel conveyor and non-parallel conveyor systems according to their applications and guide rail’s layouts. The polygonal action in these systems is irregular. Compared with the literature, this paper proposes a more accurate modelling approach to capture the dynamic behaviour of round link chain drives, which can consider both the irregular polygonal action and non-parallel guide rail’s layout. The dynamic models of the three types of round link chain drives are developed based on the finite segment method. The chain is divided into multiple discrete segments that are connected by Kelvin models. To account for the irregular polygonal action, the sprocket is equivalent to an irregular polygon. To consider the non-parallel guide rail’s layout in the conveyor system, the chain segment out of the guide rail and the corresponding sprocket are treated as a swinging-block mechanism. The proposed approach is applied to model a scraper conveyor. Simulation results show that the irregular polygonal action and non-parallel guide rail’s layout greatly increase the fluctuation of the chain tension force.

Author(s):  
Q H Nguyen ◽  
Y M Han ◽  
S B Choi ◽  
S M Hong

This work presents both the static and dynamic models for a new type of jetting dispenser featuring a piezostack actuator, which is applicable to electronic packaging assembly. After describing the configuration of the dispensing mechanism and operational principle of the proposed piezostack-driven jetting dispenser, a static modelling for mechanical part is analysed by considering the piezostack behaviour, fluid compressibility, and structural deflection. Both linear and non-linear behaviours of the structural plate are analysed and incorporated. The dynamic modelling of the mechanical part is also performed by considering the dynamic behaviour of the piston and needle. After optimizing the design parameters, such as piston radius and so on, the behaviour of the needle motion is obtained and checked for adhesive dispensing applicability. In order to demonstrate the effectiveness of the proposed static and dynamic models, an experimental test is undertaken by showing needle displacement.


2017 ◽  
Vol 11 (3) ◽  
pp. 497-506 ◽  
Author(s):  
Xiaoshu Lü ◽  
Tao Lu ◽  
Charles Kibert ◽  
Katja Vahtikari ◽  
Mark Hughes ◽  
...  

Author(s):  
Li-Ping Yang ◽  
Shin-Min Song

Abstract This paper presents a computer method to simulate the quasi-static motion of hanging cables on robots. The shape of the flexible cable is changing during motion and the finite segment method is applied to determine its configuration. The cable is modeled as a series of rigid segments segments connected together through revolute joints in 2-D case and spherical joints in 3-D case. The elasticity of cable is represented by torsional springs at the joints. In both cases, a set of highly nonlinear equations are derived based on force equilibrium and the Newton-Raphson method is applied to calculate the solution. In order to assure convergence and improve computational efficiency, the parameter perturbation method is applied together with the Newton-Raphson method. Also, some computational strategies are developed to simplify the three dimensional problem. Finally, the developed methods are demonstrated in displaying the motion of a hanging cable which is attached to a revolute joint, a prismatic joint and a three degrees of freedom robot.


2013 ◽  
Vol 457-458 ◽  
pp. 643-648
Author(s):  
Hong Wei Ma ◽  
Chuan Wei Wang

Rubber track of Rescue Robot was dispersed into limited number of track blocks by the method of finite segment method used in flexible multibody dynamics. The two neighbor track blocks were connected by springs and dampers, then the moldel was become a multi-rigid-body system with flexible joint. Rubber track was modeled with the help of macro command used in the secondary development of virtual prototype technique software named ADAMS. Flexible connection was realized by the method of adding Bushing, and then a new method was proposed to build rubber track model. The obstacle-surmounting simulation of climbing the barrier of single step was carried out. It intuitively reflected the stress and deformation under the condition of climbing barrier. The method mentioned above laid good foundation for studying obstacle-surmounting abilities of the rubber-tracked robots and dynamic characteristic of the tracks.


2019 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Faping Zhang ◽  
Kai Wu

In the fields of modern aviation system, subgrade vehicle system and complex mechanical system, there is a problem that parameters of most dynamic models are inaccurate. This problem results in a large difference between the model results and the experimental results. In order to solve this problem, this paper build a nonlinear inversion method based on dynamics model modification (NIDM). Firstly, the error relationship was obtained by integrating the experimental data with the simulation results of the forward modelling model by the cost function and penalty function. Then, the problem of error function minimization was solved by using the parameter iteration generated by particle swarm optimization algorithm, and the corrected parameters of the forward modelling model were obtained. Finally, the method was tested by building a vehicle suspension vibration model and a pavement excitation model as test samples. The test results show that the fitting degree between the simulation results and the experimental results can be effectively improved by modifying the parameters of the dynamic model based on the NIDM method.


2018 ◽  
Vol 7 (3) ◽  
pp. 1257
Author(s):  
Khalil Azha Mohd Annuar ◽  
Nik Azran Ab. Hadi ◽  
Mohamad Haniff Harun ◽  
Mohd Firdaus Mohd Ab. Halim ◽  
Siti Nur Suhaila Mirin ◽  
...  

The overhead gantry crane systems are extensively used in harbours and factories for transportation of heavy loads. The crane speeding up, required for motion, always induces undesirable load swing. This writings present dynamic modelling of a 3D overhead gantry crane sys-tem based on closed-form equations of motion. By using the Lagrange technique, a 3D overhead gantry crane system nonlinear dynamic model is deriving. Then perform a linearization process to obtain a linear model dynamic system. Finally, simulation results systems re-sponses of the derived nonlinear and linear model are presented showing the accuracy and performance of both model.  


Sign in / Sign up

Export Citation Format

Share Document