scholarly journals Defining of nonlocal damping model parameters based on composite beam dynamic behaviour numerical simulation results

Author(s):  
E S Shepitko ◽  
V N Sidorov
2019 ◽  
Vol 6 (3) ◽  

The paper is devoted to polymer composite beams dynamic behavior simulation. The nonlocal damping model is used as a model of the internal friction. The vibration process is considered in this paper using the beam with fixed ends as an example. Equation of beam motion considering nonlocal damping is solved by Galerkin method to develop the model. The required number of eigenmodes is obtained for the beam under an instantly applied distributed load. The influence of nonlocal damping model parameters variation on the beam vibration process simulation results is considered under a periodic deterministic distributed load. The calibration of nonlocal damping model consists of defining its parameter known as influence distance which characterize the level of the nonlocal properties in material. Calibration is carried out with the least squares method using the numerical simulation data. For this purpose the results of 3D finite element modeling of thermoset vinyl ester fiber reinforced plastic beam vibrations under the instantly applied load were used. The 3D finite element model of the beam was created in SIMULIA Abaqus taking into account the orthotropic properties of the material. The calibrated model was justified for the beams with changed geometry. The results presented in this paper were obtained during the research for the PhD thesis.


Author(s):  
B. Sandeep Reddy ◽  
Ashitava Ghosal

This paper deals with the issue of robustness in control of robots using the proportional plus derivative (PD) controller and the augmented PD controller. In the literature, a variety of PD and model-based controllers for multilink serial manipulator have been claimed to be asymptotically stable for trajectory tracking, in the sense of Lyapunov, as long as the controller gains are positive. In this paper, we first establish that for simple PD controllers, the criteria of positive controller gains are insufficient to establish asymptotic stability, and second that for the augmented PD controller the criteria of positive controller gains are valid only when there is no uncertainty in the model parameters. We show both these results for a simple planar two-degrees-of-freedom (2DOFs) robot with two rotary (R) joints, following a desired periodic trajectory, using the Floquet theory. We provide numerical simulation results which conclusively demonstrate the same.


2013 ◽  
Vol 353-356 ◽  
pp. 2600-2603
Author(s):  
Jun Pan ◽  
Te Leng ◽  
Yang Liu

Using numerical simulation method for project simulating prediction, the built mathematical models of actual conditions often need to be generalized, consequently, there are some inevitably deviations between model prediction results and the measured data, which requires the adjustment of model parameters to improve the model. This paper made a comparative analysis of Shifosi reservoir impoundment test observation water levels and model prediction water levels, adjust the model parameters and boundary conditions, then it would get the sensitive parameters that affect the accuracy and stability of numerical model and boundary condition and improve the fitting degree of measured data and simulation results.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


2006 ◽  
Vol 65 (16) ◽  
pp. 1533-1546
Author(s):  
Yu. Ye. Gordienko ◽  
S. A. Zuev ◽  
V. V. Starostenko ◽  
V. Yu. Tereshchenko ◽  
A. A. Shadrin

Author(s):  
Jialei Song ◽  
Yong Zhong ◽  
Ruxu Du ◽  
Ling Yin ◽  
Yang Ding

In this paper, we investigate the hydrodynamics of swimmers with three caudal fins: a round one corresponding to snakehead fish ( Channidae), an indented one corresponding to saithe ( Pollachius virens), and a lunate one corresponding to tuna ( Thunnus thynnus). A direct numerical simulation (DNS) approach with a self-propelled fish model was adopted. The simulation results show that the caudal fin transitions from a pushing/suction combined propulsive mechanism to a suction-dominated propulsive mechanism with increasing aspect ratio ( AR). Interestingly, different from a previous finding that suction-based propulsion leads to high efficiency in animal swimming, this study shows that the utilization of suction-based propulsion by a high- AR caudal fin reduces swimming efficiency. Therefore, the suction-based propulsive mechanism does not necessarily lead to high efficiency, while other factors might play a role. Further analysis shows that the large lateral momentum transferred to the flow due to the high depth of the high- AR caudal fin leads to the lowest efficiency despite the most significant suction.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Wu Xianfang ◽  
Du Xinlai ◽  
Tan Minggao ◽  
Liu Houlin

The wear-ring abrasion can cause performance degradation of the marine centrifugal pump. In order to study the effect of front and back wear-ring clearance on a pump, test and numerical simulation were used to investigate the performance change of a pump. The test results show that the head and efficiency of pump decrease by 3.56% and 9.62% respectively at 1.0 Qd due to the wear-ring abrasion. Under 1.0 Qd, with the increase of the front wear-ring the vibration velocity at pump foot increases from 0.4 mm/s to 1.0 mm/s. The axis passing frequency (APF) at the measuring points increases significantly and there appears new characteristic frequency of 3APF and 4APF. The numerical simulation results show that the front wear-ring abrasion affects the flow at the inlet of the front chamber of the pump and impeller passage. And the back wear-ring abrasion has obvious effect on the flow in the back chamber of the pump and impeller passage, while the multi-malfunction of the front wear-ring abrasion and back wear-ring abrasion has the most obvious effect on the flow velocity and flow stability inside pump. The pressure pulsation at Blade Passing Frequency (BPF) of the three schemes all decrease with the increase of the clearance.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


2014 ◽  
Vol 496-500 ◽  
pp. 642-645
Author(s):  
Yun Wang ◽  
Wei Zhang

In view of power system in water-air UAV requirements, combine with the centrifugal impeller for aero-engine and the pump impeller. The design of a impeller of centrifugal compressor can work on the air and in the water for the new concept of air-water engine. With 3D design and a 3D CFD solver on it and analysis the results of numerical simulation. Results show that the designed impeller successfully reached the goal on the air and in the water. The experiences accumulated in this procedure are useful for similar impeller aerodynamic designs.


Sign in / Sign up

Export Citation Format

Share Document