Studying and Simulation Analysis for Rubber Track of Rescue Robot

2013 ◽  
Vol 457-458 ◽  
pp. 643-648
Author(s):  
Hong Wei Ma ◽  
Chuan Wei Wang

Rubber track of Rescue Robot was dispersed into limited number of track blocks by the method of finite segment method used in flexible multibody dynamics. The two neighbor track blocks were connected by springs and dampers, then the moldel was become a multi-rigid-body system with flexible joint. Rubber track was modeled with the help of macro command used in the secondary development of virtual prototype technique software named ADAMS. Flexible connection was realized by the method of adding Bushing, and then a new method was proposed to build rubber track model. The obstacle-surmounting simulation of climbing the barrier of single step was carried out. It intuitively reflected the stress and deformation under the condition of climbing barrier. The method mentioned above laid good foundation for studying obstacle-surmounting abilities of the rubber-tracked robots and dynamic characteristic of the tracks.

2014 ◽  
Vol 488-489 ◽  
pp. 1047-1051
Author(s):  
Qing Qian Zheng ◽  
Bin Yang ◽  
Ning Chen ◽  
Hui Min Yang ◽  
Min Hu

In this paper, the finite method is applied and ABAQUS software is used, the vortex flow field is loaded as boundary condition of wraps. The stress and deformation in scroll under the action of gas pressure, temperature load and both of them is analyzed, the stress distribution and deformation of wraps in different shaft rotation angles is discussed, the stress distribution and deformation discipline of wraps are also respectively obtained. The results show that the overall stress and deformation in scroll are the largest when compression chamber is moving near the vent position and the thermal deformation is the main factor of affecting the overall deformation of scroll.


2018 ◽  
Vol 878 ◽  
pp. 89-94 ◽  
Author(s):  
Er Lei Wang

Implementing monitoring over construction process of old bridge’s reinforcement serves as an important measure to ensure construction quality and safety and realize the goal of reinforcement. This paper, with a case study of the maintenance and reinforcement project of Zhicheng Yangtze River Bridge (steel truss highway-railway combined bridge), adopted MIDAS to establish finite element analysis model, and with stress and deformation as monitoring parameters, completed the construction monitoring work, numerical simulation analysis and site test for the reinforcement project.


2011 ◽  
Vol 402 ◽  
pp. 753-757 ◽  
Author(s):  
Hai Long Tong ◽  
Zhong Hai Liu ◽  
Li Yin ◽  
Quan Jin

Base on contact kinetics finite element theory, proceed secondary development of road wheel and pin mesh’s nonlinear dynamic contact analysis in LS-DYNA module, and carry out contrast of simulation analysis, achieved stress, strain and dynamic identities that caused by meshing impact in the whole meshing process, accord with practice, can instruct product practice design.


2018 ◽  
Vol 773 ◽  
pp. 214-219
Author(s):  
Ying Shi Sun ◽  
Duo Sun

In the welding process, the welding strain and deformation of the city rail aluminum alloy flankwall are inevitable as a result of local heating, and carrying capacity of the structure will be affected by the welding stress and deformation. In the mean time, it puts forward some requirements for the clamp process, the clamping force can reduce the deformation of the workpiece. But a great change of force will produce in the clamp position during the process of welding, this force changes are easy to cause brittle fracture and fatigue damage of the clamp. In this paper, it gives simulation analysis to workpiece by using ANSYS analysis software and Gauss heat source model. Finally, the conclusion is sum up compared with the actual data.


2011 ◽  
Vol 101-102 ◽  
pp. 463-466
Author(s):  
Dong Yu Ji

Reinforced concrete continuous box-girder overpass is a common structure form, Wangzhuang overpass is example, this paper adopts universal finite element calculation software to carry out finite element simulation analysis for reinforced concrete continuous box-girder overpass. Considering the influence of overpass structure weight and driveway load, the distribution law of overpass stress and displacement were researched. Analysis results show that, load’s short-term effect combination has great influence on overpass structure, driveway slanting load’s influence on overpass structure’s stress and deformation can not be ignored.


Author(s):  
Li-Ping Yang ◽  
Shin-Min Song

Abstract This paper presents a computer method to simulate the quasi-static motion of hanging cables on robots. The shape of the flexible cable is changing during motion and the finite segment method is applied to determine its configuration. The cable is modeled as a series of rigid segments segments connected together through revolute joints in 2-D case and spherical joints in 3-D case. The elasticity of cable is represented by torsional springs at the joints. In both cases, a set of highly nonlinear equations are derived based on force equilibrium and the Newton-Raphson method is applied to calculate the solution. In order to assure convergence and improve computational efficiency, the parameter perturbation method is applied together with the Newton-Raphson method. Also, some computational strategies are developed to simplify the three dimensional problem. Finally, the developed methods are demonstrated in displaying the motion of a hanging cable which is attached to a revolute joint, a prismatic joint and a three degrees of freedom robot.


2011 ◽  
Vol 255-260 ◽  
pp. 4207-4211
Author(s):  
Yue Zhang ◽  
Mi Zhou

South pile foundation of Ma On Shan Yangtze River Highway Bridge is big, deep, soft soil, groundwater rich. In order to guarantee the safeties of the foundation, its foundation pit supporting schemes are compared, selected and calculated, finally lock mouth steel pipe support is selected as the design and construction scheme. The three-dimensional simulation analysis of the scheme is calculated by using MIDAS software, simulated four construction condition is presented, and stress and deformation results of retaining structure on various operating conditions is obtained. The calculation results show that the palisade structure basic satisfies the requirements of caps excavation and caps concrete construction. The results of construction show that the construction method, model and parameters used in this paper are basic right, the reasonableness of Supporting is confirmed and for the similar large foundation pit construction provides useful reference.


Sign in / Sign up

Export Citation Format

Share Document