Application of Box-Behnken design and response surface methodology for multi-optimization of laser cutting of AA5052/ZrO2 metal−matrix composites

Author(s):  
Vikas Sharma ◽  
Vinod Kumar

A laser source is most popular in industrial world for its high cutting efficiency and productivity. In the present research work, laser cutting of aluminium metal−matrix composite has been studied. The investigations have been done to analyse the influence of various parameters on surface and quality characteristics of aluminium alloy 5052 reinforced with ZrO2 particles. The effect of laser parameters was analysed on striation angle, heat affected zone and kerf deviation. Response surface methodology has been applied using Box-Behnken design for the statistics analysis. Heat affected zone and striation formation of laser cut surface were examined using scanning electron microscope and optical microscope. The effect of arc radius, cutting speed and percentage of reinforced particles was found to be significant on all output characteristics. The predicted response surface methodology (RSM) model was validated with experimental data for determination of accuracy level.

Author(s):  
Vikas Sharma ◽  
Vinod Kumar

This article explores the quality characteristics of laser curve cutting of metal matrix aluminium 5052 alloy reinforced with SiC particles. These alloys are extensively used in aerospace industries due to their unique mechanical properties. The response surface methodology has been used to design the mathematical models with respect to input and output characteristics parameters. The desirability function approach has been used to optimize the input parameters like cutting speed, laser power, stand-off distance, nozzle diameter, nitrogen gas pressure, percentage of reinforced SiC particles, arc radius by considering multiple-performance characteristics. The various quality aspects of machined specimens were analysed using optical microscope, scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray analysis techniques. The response surface methodology predicted models were validated by performing various confirmatory experiments. The percentage of error for the dross height, kerf taper and kerf width was found to be 4.62%, 6.55% and 5.04 % which signifies that predicted model is adequate.


2018 ◽  
Vol 1 (1) ◽  
pp. 248-267
Author(s):  
Vikas Sharma ◽  
Vinod Kumar

The research work explores the parametric influence of laser input variables on surface roughness and heat affected zone width. The workpiece material used as metal matrix aluminum 5052 alloy reinforced with ZrO2 particles. The computational analysis has been carried out using finite element method by taking laser power and arc radius profiles as variables. The mathematical model has been generated using Box-Behnken method for the analysis of variance. The machined samples have been analyzed using optical microscope and surface tester for measurement of quality characteristics. It has been analyzed that the effect of interaction of parameters has significant effect on surface roughness and heat affected zone width. Moreover, the influence of laser cutting speed, quantity of reinforced particles and laser cut path profile proved to be significant parameters for quality characteristics. The von-misses stress and temperature values found to be highest in case of complex cutting profiles as compared to linear trajectories.


Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


2018 ◽  
Vol 53 (11) ◽  
pp. 1459-1473 ◽  
Author(s):  
Shiva Dayal Rao B ◽  
Abhijeet Sethi ◽  
Alok Kumar Das

In the present investigation, a continuous wave fiber laser with maximum power of 400 W was used to cut a glass fiber reinforced plastic sheet of 4.56 mm thickness using Nitrogen as assisting gas. The influence processing parameters such as laser irradiance, gas pressure, and cutting speed on the cut surface quality were investigated by using response surface methodology. The different responses of laser cut surface such as upper kerf width, taper percentage along the cut depth, and heat-affected zone on the top surface were measured to analyze the influence of input process parameters on the responses. A statistical analysis on the obtained results was conducted and found that the optimum values of different input process parameters were laser irradiance: 8.28 × 105 watt/cm2, cutting speed: 600 mm/min and assisting gas pressure: 7.84 bar. The corresponding values of responses were upper kerf width: 177.4 µm, taper 0.73%, and heat-affected zone on top surface: 109.23 µm. The confirmation experiments were conducted with the obtained optimum parameter setting and observed that the predicted values and experimental values for upper kerf width, taper percentage and top surface heat-affected zone were within the error limits of 2.52%, 1.84%, and 0.45%, respectively. Furthermore, damages like loose fibers, interlayer fractures, evaporation of matrix material and fiber breakages were observed.


2018 ◽  
Vol 153 ◽  
pp. 05005
Author(s):  
Hani Mizhir ◽  
Kamil Jawad ◽  
Zuhair H Obaid

One of the important goals of this research is to predict a relationship between the process input parameters and resultants from surface roughness features through developing a laser cutting model. In most engineering applications, natural sciences and computing; statistical methods, which are one of mathematical branch are widely used for investigating the results. Laser cutting process of stainless steel (2205) is a machining process selected for this study. The technique which adopted here is a response surface methodology (RSM). The main portion for this study is the influence of cutting speed on surface quality. To study the model response, and for statistical approach with further prediction; a mathematical based model has been developed through regression analysis. It’s found that as one of the important results in this research, that cutting speed and surface roughness has a significant rule on the model response. To produce a good surface roughness, it’s approved that the high cutting speed connected with high power regardless of high pressure has a high influence on surface quality.


2009 ◽  
Vol 83-86 ◽  
pp. 793-800 ◽  
Author(s):  
M.M. Noor ◽  
K. Kadirgama ◽  
M.M. Rahman ◽  
N.M. Zuki N.M. ◽  
Mohd Ruzaimi Mat Rejab ◽  
...  

This paper develops the predicting model on surface roughness of laser beam cutting (LBC) for acrylic sheets. Box-Behnken design based on Response surface method was used to predict the effect of laser cutting parameters including the power requirement, cutting speed and tip distance on surface roughness during the machining. Response surface method (RSM) was used to minimize the number of experiments. It can be seen that from the experimental results, the effects of the laser cutting parameters with the surface roughness were investigated. It was found that the surface roughness is significantly affected by the tip distance followed by the power requirement and cutting speed. Some defects were found in microstructure such as burning, melting and wavy surface. This simulation gain more understanding of the surface roughness distribution in laser cutting. The developed model is suitable to be used in the range of (power 90 to 95, cutting speed 700 to 1100 and tip distance 3 to 9) to predict surface roughness.


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Praveen Kumar Siddalingappa Virupakshappa ◽  
Manjunatha Bukkambudhi Krishnaswamy ◽  
Gaurav Mishra ◽  
Mohammed Ameenuddin Mehkri

The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and   % removal of crude oil.


Sign in / Sign up

Export Citation Format

Share Document