On three-dimensional printing of 17-4 precipitation-hardenable stainless steel with direct metal laser sintering in aircraft structural applications

Author(s):  
Rupinder Singh ◽  
Rishab ◽  
Jashanpreet S Sidhu

The martensitic 17-4 precipitation-hardenable stainless steel is one of the commercially established materials for structural engineering applications in aircrafts due to its superior mechanical and corrosion resistance properties. The mechanical processing of this alloy through a conventional manufacturing route is critical from the dimensional accuracy (Δ d) viewpoint for development of innovative structural components such as: slat tracks, wing flap tracks, etc. In past two decades, a number of studies have been reported on challenges being faced while conventional processing of 17-4 precipitation-hardenable stainless steel for maintaining uniform thickness of aircraft structural components. However, hitherto little has been reported on direct metal laser sintering of 17-4 precipitation-hardenable stainless steel for development of innovative functional prototypes with uniform surface hardness (HV), Δ d, and surface roughness ( Ra) in aircraft structural engineering. This paper reports the effect of direct metal laser sintering process parameters on HV, Δ d, and Ra for structural components. The results of study suggest that optimized settings of direct metal laser sintering from multifactor optimization viewpoint are laser power 100 W, scanning speed 1400 mm/s, and layer thickness 0.02 mm. The results have been supported with scanning electron microscopy analysis (for metallurgical changes such as porosity (%), HV, grain size, etc.) and international tolerance grades for ensuring assembly fitment.

Author(s):  
Genrik Mordas ◽  
Ada Steponavičiūtė ◽  
Aušra Selskienė ◽  
Jurijus Tretjakovas ◽  
Sergejus Borodinas

Additive manufacturing (AM) is a type of manufacturing technologies whereby the material is added a layer upon layer to produce a 3D object. Produced 3D parts are applied in such industry sectors as space, aviation, automotive, building and has excellent future promises. Ourdays, the commercialy promised technique for metal manufacturing is Direct Metal Laser Sintering (DMLS). Our study concentrated on the investigation of the mechanical properties of produced17-4H (stainless steel) parts using DMLS. The effect of the DMLS process parameters (laser power, scanning speed and energy density) on the ultimate strength, yield strength and Young’s modulus was determined. We showed an evolution of the microstructure. The detected defects were classified. This study allowed to determine the optimal regimes of DMLS for SS 17-4H and describe mechanical properties of the produced parts as well as helped to show future possibilities of DMLS development.


2008 ◽  
Vol 594 ◽  
pp. 241-248 ◽  
Author(s):  
Fwu Hsing Liu ◽  
Yunn Shiuan Liao ◽  
Hsiu Ping Wang

The material in powder state has long been used by selective laser sintering (SLS) for making rapid prototyping (RP) parts. A new approach to fabricate smoother surface roughness RP parts of ceramic material from slurry-sate has been developed in this study. The silica slurry was successfully laser-gelling in a self-developed laser sintering equipment. In order to overcome the insufficient bonding strength between layers, a strategy is proposed to generate ceramic parts from a single line, a single layer, to multi-layers of gelled cramic in this paper. It is found that when the overlap of each single line is 25% and the over-gel between layers is 30%, stronger and more accurate dimensional parts can be obtained under a laser power of 15W, a laser scanning speed of 250 mm/s, and a layer thickness of 0.1 mm. The 55:45 wt. % of the proportion between the silica powder and silica solution results in suitable viscosity of the ceramic slurries without precipitation. Furthermore, the effects of process parameters for the dimensional accuracy and surface roughness of the gelled parts are investigated and appropriate parameters are obtained.


Author(s):  
Bin Xiao ◽  
Yuwen Zhang

A three-dimensional model describing melting and resolidification of direct metal laser sintering of loose powders on top of sintered layers with a moving Gaussian laser beam is developed. Natural convection in the liquid pool driven by buoyancy and Marangoni effects is taken into account. A temperature transforming model is employed to model melting and resolidification in the laser sintering process. The continuity, momentum, and energy equations are solved using a finite volume method. The effects of dominant processing parameters including number of the existing sintered layers underneath, laser scanning velocity, and initial porosity on the sintering process are investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
F. Mangano ◽  
L. Chambrone ◽  
R. van Noort ◽  
C. Miller ◽  
P. Hatton ◽  
...  

Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices.Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties.Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, andin vitrocell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used.Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality.Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.


Sign in / Sign up

Export Citation Format

Share Document