titanium dental implants
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 68)

H-INDEX

37
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 545
Author(s):  
Pablo Verdeguer ◽  
Javier Gil ◽  
Miquel Punset ◽  
José María Manero ◽  
José Nart ◽  
...  

The passivation of titanium dental implants is performed in order to clean the surface and obtain a thin layer of protective oxide (TiO2) on the surface of the material in order to improve its behavior against corrosion and prevent the release of ions into the physiological environment. The most common chemical agent for the passivation process is hydrochloric acid (HCl), and in this work we intend to determine the capacity of citric acid as a passivating and bactericidal agent. Discs of commercially pure titanium (c.p.Ti) grade 4 were used with different treatments: control (Ctr), passivated by HCl, passivated by citric acid at 20% at different immersion times (20, 30, and 40 min) and a higher concentration of citric acid (40%) for 20 min. Physical-chemical characterization of all of the treated surfaces has been carried out by scanning electronic microscopy (SEM), confocal microscopy, and the ‘Sessile Drop’ technique in order to obtain information about different parameters (topography, elemental composition, roughness, wettability, and surface energy) that are relevant to understand the biological response of the material. In order to evaluate the corrosion behavior of the different treatments under physiological conditions, open circuit potential and potentiodynamic tests have been carried out. Additionally, ion release tests were realized by means of ICP-MS. The antibacterial behavior has been evaluated by performing bacterial adhesion tests, in which two strains have been used: Pseudomonas aeruginosa (Gram–) and Streptococcus sanguinis (Gram+). After the adhesion test, a bacterial viability study has been carried out (‘Life and Death’) and the number of colony-forming units has been calculated with SEM images. The results obtained show that the passivation with citric acid improves the hydrophilic character, corrosion resistance, and presents a bactericide character in comparison with the HCl treatment. The increasing of citric acid concentration improves the bactericide effect but decreases the corrosion resistance parameters. Ion release levels at high citric acid concentrations increase very significantly. The effect of the immersion times studied do not present an effect on the properties.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 178
Author(s):  
Javier Gil ◽  
Román Pérez ◽  
Mariano Herrero-Climent ◽  
Maria Rizo-Gorrita ◽  
Daniel Torres-Lagares ◽  
...  

Objectives. The purpose of this work was to determine the influence of residual alumina after sand blasting treatment in titanium dental implants. This paper studied the effect of alumina on physico-chemical surface properties, such as: surface wettability, surface energy. Osseointegration and bacteria adhesion were determined in order to determine the effect of the abrasive particles. Materials and Methods. Three surfaces were studied: (1) as-received, (2) rough surface with residual alumina from sand blasting on the surface and (3) with the same roughness but without residual alumina. Roughness was determined by white light interferometer microscopy. Surface wettability was evaluated with a contact angle video-based system and the surface free energy by means of Owens and Wendt equation. Scanning electron microscopy equipped with microanalysis was used to study the morphology and determine the chemical composition of the surfaces. Bacteria (Lactobacillus salivarius and Streptococcus sanguinis) were cultured in each surface. In total, 110 dental implants were placed into the bone of eight minipigs in order to compare the osseointegration. The percentage of bone-to-implant contact was determined after 4 and 6 weeks of implantation with histometric analysis. Results. The surfaces with residual alumina presented a lower surface free energy than clean surfaces. The in vivo studies demonstrated that the residual alumina accelerated bone tissue growth at different implantation times, in relation to clean dental implants. In addition, residual alumina showed a bactericidal effect by decreasing the quantity of bacteria adhering to the titanium. Conclusions. It is possible to verify the benefits that the alumina (percentages around 8% in weight) produces on the surface of titanium dental implants. Clinical relevance. Clinicians should be aware of the benefits of sand-blasted alumina due to the physico-chemical surface changes demonstrated in in vivo tests.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7886
Author(s):  
Nerea Arlucea ◽  
Aritza Brizuela-Velasco ◽  
Markel Dieguez-Pereira ◽  
Miquel Punset ◽  
Meritxell Molmeneu ◽  
...  

The present experimental trial uses two types of dental implants, one made of titanium (Ti6Al4V) and the other one of zirconia (ZrO2), but both of identical design, to compare their stability and micro-movements values under load. One of each type of implant (n = 42) was placed into 21 cow ribs, recording the insertion torque and the resonance frequency using a specific transducer. Subsequently, a prosthetic crown made of PMMA was screwed onto each of the implants in the sample. They were then subjected to a static compression load on the vestibular cusp of the crown. The resulting micromovements were measured. The zirconia implants obtained a higher mean of both IT and RFA when compared with those of titanium, with statistically significant differences in both cases (p = 0.0483 and p = 0.0296). However, the micromovement values when load was applied were very similar for both types, with the differences between them (p = 0.3867) not found to be statistically significant. The results show that zirconia implants have higher implant stability values than titanium implants. However, the fact that there are no differences in micromobility values implies that caution should be exercised when applying clinical protocols for zirconia based on RFA, which only has evidence for titanium.


2021 ◽  
Author(s):  
EE Olesov ◽  
AS Ivanov ◽  
RS Zaslavskiy ◽  
AV Ragulin ◽  
AS Romanov

The statistically significant long-term results of the implant survival and the effectiveness of prostheses are inadequately represented in scientific literature. The study was aimed to assess the effectiveness of prosthetics with fixed structures on the intraosseous dental implants for the replacement of partially absent dentition in the dynamics of the 20-year follow-up. A total of 671 patients with partially missing teeth were examined at the Clinical Center of Dentistry of the FMBA of Russia, who were fitted with 1,700 intraosseous titanium dental implants with the terms from the moment of completion of prosthetics on implants of 5, 10, 15 or 20 years. The criteria for clinical and radiological evaluation of the implant condition were as follows: no complications affecting the condition of periimplant tissues (normal), mucositis, periimplantitis with bone resorption at 1/3 or 1/2 of the implant height, implant removal. Based on 20 years of experience, prosthetics with fixed structures on implants is highly effective in replacing the partial defects of dentition. In total, 62.2% of implants remain functional for 20 years. The average life of implant-supported fixed prostheses is 15 years for bridges, and 20 years for single and combined implant-supported crowns. The most effective are single implant-supported crowns, and the least effective are prostheses supported by implants and teeth. The significantly preserved implant-supported prostheses make it possible to support the concept of the long-term implant installation with respect to the implant-supported non-removable prostheses. The view is thus confirmed that the effectiveness of the implant-supported prosthetics is reduced with the inclusion of teeth in the bridge support, along with implants.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7076
Author(s):  
Christian Flörke ◽  
Anne-Katrin Eisenbeiß ◽  
Ulla Metz ◽  
Aydin Gülses ◽  
Yahya Acil ◽  
...  

Background and Objectives: The aim of the current study was to establish an osseo-disintegration model initiated with a single microorganism in mini-pigs. Materials and Methods: A total of 36 titanium dental implants (3.5 mm in diameter, 9.5 mm in length) was inserted into frontal bone (n: 12) and the basis of the corpus mandible (n: 24). Eighteen implants were contaminated via inoculation of Enterococcus faecalis. Six weeks after implant insertion, bone-to-implant contact (BIC) ratio, interthread bone density (ITBD), and peri-implant bone density (PIBD) were examined. In addition to that, new bone formation was assessed via fluorescence microscopy, histomorphometry, and light microscopical examinations. Results: Compared to the sterile implants, the contaminated implants showed significantly reduced BIC (p < 0.001), ITBD (p < 0.001), and PBD (p < 0.001) values. Around the sterile implants, the green and red fluorophores were overlapping and surrounding the implant without gaps, indicating healthy bone growth on the implant surface, whereas contaminated implants were surrounded by connective tissue. Conclusions: The current experimental model could be a feasible option to realize a significant alteration of dental-implant osseointegration and examine novel surface decontamination techniques without impairing local and systemic inflammatory complications.


2021 ◽  
Vol 7 (9) ◽  
pp. 308-314
Author(s):  
M. Smanaliev ◽  
I. Yuldashev

Studied the silver nanoparticles antibacterial action when it coated titanium dental implants. The accumulation of nano-silver on implants surface obtained by scanning electron microscopy and energy dispersive X-ray spectroscopy. The distribution of nano silver is uneven throughout the entire length of the implant. Nano silver is scattered over the surface of the implant with a particle size of up to 5 nM.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2336
Author(s):  
Sepanta Hosseinpour ◽  
Ashwin Nanda ◽  
Laurence J. Walsh ◽  
Chun Xu

Peri-implantitis is the major cause of the failure of dental implants. Since dental implants have become one of the main therapies for teeth loss, the number of patients with peri-implant diseases has been rising. Like the periodontal diseases that affect the supporting tissues of the teeth, peri-implant diseases are also associated with the formation of dental plaque biofilm, and resulting inflammation and destruction of the gingival tissues and bone. Treatments for peri-implantitis are focused on reducing the bacterial load in the pocket around the implant, and in decontaminating surfaces once bacteria have been detached. Recently, nanoengineered titanium dental implants have been introduced to improve osteointegration and provide an osteoconductive surface; however, the increased surface roughness raises issues of biofilm formation and more challenging decontamination of the implant surface. This paper reviews treatment modalities that are carried out to eliminate bacterial biofilms and slow their regrowth in terms of their advantages and disadvantages when used on titanium dental implant surfaces with nanoscale features. Such decontamination methods include physical debridement, chemo-mechanical treatments, laser ablation and photodynamic therapy, and electrochemical processes. There is a consensus that the efficient removal of the biofilm supplemented by chemical debridement and full access to the pocket is essential for treating peri-implantitis in clinical settings. Moreover, there is the potential to create ideal nano-modified titanium implants which exert antimicrobial actions and inhibit biofilm formation. Methods to achieve this include structural and surface changes via chemical and physical processes that alter the surface morphology and confer antibacterial properties. These have shown promise in preclinical investigations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Markel Diéguez-Pereira ◽  
David Chávarri-Prado ◽  
Iratxe Viteri-Agustín ◽  
Oier Montalban-Vadillo ◽  
Esteban Pérez-Pevida ◽  
...  

Abstract Background Implantoplasty reduces both implant diameter and the thickness of its walls, subsequently reducing the ability of the implant to resist fracture in response to functional load. In combination with an increase in the crown-implant ratio due to bone loss, this could increase the lever effect, which in presence of high masticatory forces or parafunctional habits, could lead to complications such as fracture of the implant or loosening of the prosthetic screw. Objectives To determine the elastic limits of internal connection, dental implants of different designs and diameters after an implantoplasty. Materials and methods This in vitro study included 315 tapered internal connection titanium dental implants, the threads of which were removed with an industrial milling machine—for standardized implantoplasty (IMP1; n = 105)—or with the conventional approach—manually, using high-speed burs (IMP2; n = 105). The remaining 105 implants were used as controls. The final implant diameters were recorded. The quality of the newly polished surfaces was assessed by scanning electron microscopy. All implants were subjected to a mechanical pressure resistance test. A Tukey’s test for multiple comparisons was used to detect differences in the elastic limit and final implant diameters between the implant groups. Results There were statistically significant differences in the elastic limit between the IMP1, IMP2, and control groups (p < 0.05). Furthermore, the implant diameter was significantly smaller in the IMP1 and IMP2 groups (p < 0.05). Scanning electron microscopy revealed smooth implant surfaces in the IMP1 and IMP2 groups, with some titanium particles visible in the IMP1 group. Conclusions Implantoplasty significantly decreased the elastic limit of internal connection titanium dental implants, especially in those with a smaller diameter (3-3.5 mm).


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 777
Author(s):  
Nansi López-Valverde ◽  
Antonio López-Valverde ◽  
Juan Manuel Aragoneses ◽  
Francisco Martínez-Martínez ◽  
María C. González-Escudero ◽  
...  

Peri-implant bone density plays an important role in the osseointegration of dental implants. The aim of the study was to evaluate via micro-CT, in Hounsfield units, the bone density around dental implants coated with chitosan and melatonin and to compare it with the bone density around implants with a conventional etched surface after 12 weeks of immediate post-extraction placement in the jaws of Beagle dogs. Six dogs were used, and 48 implants were randomly placed: three groups—melatonin, chitosan, and control. Seven 10 mm × 10 mm regions of interest were defined in each implant (2 in the crestal zone, 4 in the medial zone, and 1 in the apical zone). A total of 336 sites were studied with the AMIDE tool, using the Norton and Gamble classification to assess bone density. The effect on bone density of surface coating variables (chitosan, melatonin, and control) at the crestal, medial, and apical sites and the implant positions (P2, P3, P4, and M1) was analyzed at bivariate and multivariate levels (linear regression). Adjusted effects on bone density did not indicate statistical significance for surface coatings (p = 0.653) but did for different levels of ROIs (p < 0.001) and for positions of the implants (p = 0.032). Micro-CT, with appropriate software, proved to be a powerful tool for measuring osseointegration.


Sign in / Sign up

Export Citation Format

Share Document