A review of thermal barrier coatings for improvement in thermal efficiency of both gasoline and diesel reciprocating engines

2020 ◽  
pp. 146808742097801
Author(s):  
Noboru Uchida

Cylinder wall heat insulation using thermal barrier coatings is both an old and new thermal efficiency improvement technology for internal combustion engines. This review first outlines the history of thermal barrier coating (TBC) technologies applied to reciprocating engines from the 1970s up to the present day, by referring to several distinctive reference papers. These research efforts, however, present a number of conflicting conclusions. In order to understand why the results did not always coincide, certain key features of TBC’s studied in the reference papers were then investigated in more detail, such as thermal properties, porosity, surface roughness, and translucence/emissivity. The studies of not only the effect of TBC’s on diesel exhaust emissions, but TBC effects on gasoline and HCCI performance and exhaust emissions, are also reviewed for the investigation of manifold TBC characteristics. Finally, state of the art techniques and constraints were reviewed for experimental and numerical analysis of the heat transfer mechanism, which should be applied to TBC research.

2021 ◽  
Vol 8 (1) ◽  
pp. H16-H20
Author(s):  
A.V.N.S. Kiran ◽  
B. Ramanjaneyulu ◽  
M. Lokanath M. ◽  
S. Nagendra ◽  
G.E. Balachander

An increase in fuel utilization to internal combustion engines, variation in gasoline price, reduction of the fossil fuels and natural resources, needs less carbon content in fuel to find an alternative fuel. This paper presents a comparative study of various gasoline blends in a single-cylinder two-stroke SI engine. The present experimental investigation with gasoline blends of butanol and propanol and magnesium partially stabilized zirconium (Mg-PSZ) as thermal barrier coating on piston crown of 100 µm. The samples of gasoline blends were blended with petrol in 1:4 ratios: 20 % of butanol and 80 % of gasoline; 20 % of propanol and 80 % of gasoline. In this work, the following engine characteristics of brake thermal efficiency (BTH), specific fuel consumption (SFC), HC, and CO emissions were measured for both coated and non-coated pistons. Experiments have shown that the thermal efficiency is increased by 2.2 % at P20. The specific fuel consumption is minimized by 2.2 % at P20. Exhaust emissions are minimized by 2.0 % of HC and 2.4 % of CO at B20. The results strongly indicate that the combination of thermal barrier coatings and gasoline blends can improve engine performance and reduce exhaust emissions.


2021 ◽  
Vol 182 ◽  
pp. 109273
Author(s):  
Keekeun Kim ◽  
Damhyun Kim ◽  
Kibum Park ◽  
Junghan Yun ◽  
Namgyu Jun ◽  
...  

2005 ◽  
Vol 290 ◽  
pp. 336-339 ◽  
Author(s):  
G. Guidoni ◽  
Y. Torres Hernández ◽  
Marc Anglada

Four point bending tests have been carried out on a thermal barrier coating (TBC) system, at room temperature. The TBC system consisted of a plasma sprayed Y-TZP top coat with 8 % in weight of Yttria, a bond coat of NiCrAlY and a Ni-based superalloy Inconel 625 as substrate. The TBC coating was deposited on both sides of the prismatic specimens. Efforts have been done in detecting the damage of the coating by means of Maltzbender et al [1] model.


Author(s):  
N. Mifune ◽  
Y. Harada ◽  
H. Taira ◽  
S. Mishima

Abstract Higher-temperature operation in a gas turbine has urged development of heat-resistant coatings and thermal barrier coatings. We have developed a 2CaO-SiO2-CaO-ZrO2 based thermal barrier coating. This coating should effectively prevent separation of the coating by relieving the shear stress generated due to thermal change of environment between layers with dissimilar properties. The coating was applied to stationary vanes of an actual gas turbine in a 25,000-hour test. This paper describes the results of the field test.


Author(s):  
J. Wigren ◽  
J.-F. de Vries ◽  
D. Greving

Abstract Thermal barrier coatings are used in the aerospace industry for thermal insulation in hot sections of gas turbines. Improved coating reliability is a common goal among jet engine designers. In-service failures, such as coating cracking and spallation, result in decreased engine performance and costly maintenance time. A research program was conducted to evaluate residual stresses, microstructure, and thermal shock life of thermal barrier coatings produced from different powder types and spray parameters. Sixteen coatings were ranked according to their performance relative to the other coatings in each evaluation category. Comparisons of residual stresses, powder morphology, and microstructure to thermal shock life indicate a strong correlation to thermal barrier coating performance. Results from these evaluations will aid in the selection of an optimum thermal barrier coating system for turbine engine applications.


2011 ◽  
Vol 462-463 ◽  
pp. 389-394 ◽  
Author(s):  
Wei Xu Zhang ◽  
Yong Le Sun ◽  
Tie Jun Wang

The spinel growth induces undulation of the thermal growth oxide layer and decreases the service life of plasma-sprayed thermal barrier coatings. An analytical model is introduced to investigate the effect of spinel growth on the delamination of thermal barrier coating. The analytical results show that the number per unit area and the growth rate of spinel have significant influence on the delamination of thermal barrier coating. The stiffer and thicker thermal barrier coating is more easily to delaminate from the bond coat due to the existence of spinels. The effect of spinel on the delamination cannot be neglected. How to reduce the growth rate and the number of spinel is a key problem to prolong the service life of thermal barrier coatings.


2011 ◽  
Vol 291-294 ◽  
pp. 172-175
Author(s):  
Zhi Yong Han ◽  
Huan Wang

Considering the concave cone 3 dimension interface topography unit, the distribution of residual stress in thermal barrier coating was calculated using ABAQUS soft by finite element method. The calculating result shows that the residual stress is affected by interface topography unit obviously. Compressive stress exists in concave cone topography unit. Stress concentrates in boundary of topography unit and reaches maximal value at the lowest place of the topography. Compressive stress changes with the size of topography unit and the space between two topography units distinctly.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 85
Author(s):  
Yuanzhe Zhang ◽  
Pei Liu ◽  
Zheng Li

Inlet temperature is vital to the thermal efficiency of gas turbines, which is becoming increasingly important in the context of structural changes in power supplies with more intermittent renewable power sources. Blade cooling is a key method for gas turbines to maintain high inlet temperatures whilst also meeting material temperature limits. However, the implementation of blade cooling within a gas turbine—for instance, thermal barrier coatings (TBCs)—might also change its heat transfer characteristics and lead to challenges in calculating its internal temperature and thermal efficiency. Existing studies have mainly focused on the materials and mechanisms of TBCs and the impact of TBCs on turbine blades. However, these analyses are insufficient for measuring the overall impact of TBCs on turbines. In this study, the impact of TBC thickness on the performance of gas turbines is analyzed. An improved mathematical model for turbine flow passage is proposed, considering the impact of cooling with TBCs. This model has the function of analyzing the impact of TBCs on turbine geometry. By changing the TBCs’ thickness from 0.0005 m to 0.0013 m, its effects on turbine flow passage are quantitatively analyzed using the proposed model. The variation rules of the cooling air ratio, turbine inlet mass flow rate, and turbine flow passage structure within the range of 0.0005 m to 0.0013 m of TBC thicknesses are given.


Author(s):  
Satyarth Singh Gautam ◽  
Rohan Singh ◽  
Anand Singh Vibhuti ◽  
Gaurav Sangwan ◽  
Tapan K. Mahanta ◽  
...  

2021 ◽  
Author(s):  
Yoshifumi Okajima ◽  
Taiji Torigoe ◽  
Masahiko Mega ◽  
Masamitsu Kuwabara ◽  
Naotoshi Okaya

Abstract Increasing operating temperature plays a critical role in improving the thermal efficiency of gas turbines. This paper assesses the capability of advanced thermal barrier coatings being developed for use in 1700 °C class gas turbines. Parts sprayed with these coatings were evaluated and found to have excellent durability and long-term reliability.


Sign in / Sign up

Export Citation Format

Share Document