Installation and characteristics of urea-selective catalytic reduction systems for nitrogen oxide reduction in marine diesel engine

Author(s):  
Younghyun Ryu ◽  
Hongryeol Kim ◽  
Wookje Cho ◽  
Jeonggil Nam
2019 ◽  
Author(s):  
Μιχαήλ Φωτεινός

Οι μεγάλοι δίχρονοι ναυτικοί κινητήρες diesel χρησιμοποιούνται ως μέσο πρόωσης στην πλειονότητα των ποντοπόρων ναυτικών εφαρμογών. Με στόχο τη μείωση του περιβαλλοντικού αποτυπώματος του θαλάσσιου τομέα, ο Διεθνής Ναυτιλιακός Οργανισμός έχει θεσπίσει κανονισμούς που θέτουν αυστηρά όρια στις εκπεμπόμενες εκπομπές οξειδιών του αζώτου (ΝΟx) από ναυτικούς κινητήρες, γνωστούς και ως κανονισμούς ΙΜΟ Tier III. Η Επιλεκτική Καταλυτική Αναγωγή (Selective Catalytic Reduction, SCR) είναι μια τεχνολογία μετεπεξεργασίας καυσαερίων που επιτρέπει την συμμόρφωση με τα νέα πρότυπα εκπομπών NOx. Λόγω της απαίτησης υψηλών θερμοκρασιών για ομαλή λειτουργία του συστήματος SCR, σε ναυτικές εφαρμογές 2-Χ κινητήρων, το SCR τοποθετείται ανάντη του στροβίλου, δηλαδή μεταξύ του κινητήρα και του υπερπληρωτή (στην πλευρά υψηλής πίεσης του στροβίλου). Αυτό έχει ως αποτέλεσμα την διατάραξη της σύζευξης του κινητήρα και του υπερπληρωτή εισάγοντας προκλήσεις στην μεταβατική λειτουργία του κινητήρα. Λόγω της μεγάλης θερμικής αδράνειας του συστήματος SCR, ο υπερπληρωτής αποκρίνεται σε μία μεταβολή φορτίου του κινητήρα με μία σημαντική χρονική καθυστέρηση, η οποία σε χαμηλό φορτίο του κινητήρα μπορεί να οδηγήσει το σύστημα σε θερμική αστάθεια. Ερευνητές έχουν υπογραμμίσει την ευαισθησία του συστήματος και έχουν προτείνει περίπλοκες και κοστοβόρες λύσεις για να διασφαλίσουν την εύρωστη λειτουργία του, όπως το σύστημα στροβίλου μεταβλητής γεωμετρίας (Variable Geometry Turbine, VTG).Η διατριβή αυτή διερευνά τη μεταβατική απόκριση μεγάλου δίχρονου ναυτικού κινητήρα diesel, χωρίς μεταβλητότητα υπερπληρωτή, συνδεδεμένου με σύστημα απορρύπανσης καυσαερίων SCR. Σκοπός της εργασίας είναι η διερεύνηση της επίδρασης του συστήματος SCR υψηλής πίεσης στην μεταβατική απόκριση του κινητήρα με έμφαση στη λειτουργία σε χαμηλό φορτίο κινητήρα. Λόγω του υψηλού κόστους που εμπεριέχεται στα πειράματα με μεγάλους δίχρονους κινητήρες, η έρευνα διεξήχθη μέσω μοντελοποίησης και προσομοίωσης. Αναπτύχθηκαν μοντέλα μηδενικής διάστασης (zero dimensional models) για την προσομοίωση του κινητήρα πρόωσης και του συστήματος SCR. Το μοντέλο του κινητήρα αναπτύχθηκε χρησιμοποιώντας τον κώδικα προσομοίωσης κινητήρων του Εργαστηρίου Ναυτικής Μηχανολογίας MOTHER και επιβεβαιώθηκε με χρήση διαθέσιμων μετρήσεων από τις δοκιμές αγοράς του κινητήρα (shop trials). Επιπλέον, αναπτύχθηκε ένα μοντέλο για το σύστημα SCR ώστε να ληφθεί υπόψη η θερμοκρασιακή δυναμική του συστήματος. Το μοντέλο SCR επιβεβαιώθηκε μέσω σύγκρισης των αποτελεσμάτων του, με διαθέσιμες μετρήσεις από μία κλίνη δοκιμών ναυτικού κινητήρα με σύστημα SCR. Σε μεταβατικές καταστάσεις φόρτισης, το φορτίο που πρέπει να υπερνικήσει ο κινητήρας, δηλαδή η ροπή της έλικας, δεν είναι γνωστό εκ των προτέρων αλλά είναι προιόν περίπλοκων αλληλεπιδράσεων μεταξύ του κινητήρα, της έλικας και της γάστρας του πλοίου. Προκειμένου να επιτευχθή ακριβής πρόβλεψη του φορτίου του κινητήρα κατά τη διάρκεια των μεταβατικών φαινομένων, μοντέλα για την έλικα και τη γάστρα του πλοίου αναπτύχθηκαν και ενσωματώθηκαν στα μοντέλα γάστρας και έλικας. Το συζευγμένο μοντέλο του συστήματος πρόωσης επικυρώθηκε υπό συνθήκες μεταβατικής φόρτισης χρησιμοποιώντας διαθέσιμα μετρημένα δεδομένα επί πλοίου.Το συνολικό σύστημα προσομοιώθηκε υπό μεταβατική φόρτιση υπό καλές και δυσμενείς καιρικές συνθήκες. Τα αποτελέσματα έδειξαν ότι η μεταβατική απόκριση του κινητήρα επηρεάζεται πράγματι από την παρουσία του συστήματος SCR και το αποτέλεσμα είναι πιο έντονο στην περιοχή χαμηλότερου φορτίου κινητήρα. Ωστόσο, η θερμική αστάθεια του συστήματος μπορεί να αποφευχθεί και το σύστημα είναι σε θέση να λειτουργεί ακόμη και κατά τη λειτουργία σε πολύ χαμηλό φορτίο.


Author(s):  
Tae Joong Wang ◽  
Duk Sang Kim ◽  
Tae Shik Ahn

In this study, the transient nitrogen oxide reduction performance of a urea selective catalytic reduction system installed on a non-road diesel engine was tested on an engine dynamometer bench over a scheduled non-road transient cycle mode. Based on the measurement results, the characteristics of the transient selective catalytic reduction behaviours of nitrogen oxide reduction were evaluated. Also, in this study, the effects of several thermal management strategies for improving the selective catalytic reduction efficiency was investigated by transient selective catalytic reduction simulations. The kinetic parameters of the current simulation code for selective catalytic reduction were calibrated and validated by comparison with the measurement data. As a result of this study, it was found that a thermal management strategy utilizing a partial temperature rise in the transient time domain can be an efficient approach for improving the transient selective catalytic reduction efficiency, in comparison with the temperature rise over the entire cycle period. Furthermore, this study can provide some guideline data for the magnitude and the duration of the temperature rise required to obtain the target selective catalytic reduction efficiency over the non-road transient cycle mode. In the last part of this study, the impact of the variation in the space velocity on the transient selective catalytic reduction efficiency was assessed using transient selective catalytic reduction simulations.


Author(s):  
Michael I. Foteinos ◽  
Stavros K. Konstantinidis ◽  
Nikolaos P. Kyrtatos ◽  
Kræn Vodder Busk

The IMO tier III legislation, applicable to vessels with a keel laying date from Jan. 1, 2016, has compelled engine builders to apply new technologies for NOx abatement. One of the most promising technologies for tier III compliance is the selective catalytic reduction (SCR) of nitrogen oxides (NOx). Despite that SCR technology has been applied in powerplants and heavy duty truck engines for years, there are challenges that stem from its applications in large two-stroke marine diesel engines. In this paper, an SCR model applicable to large two-stroke marine diesel engines is introduced. The goal of the model is to predict the thermal response of a marine SCR aftertreatment system when the engine undergoes transient loading. The model has been developed and validated using testbed measured data from a large two-stroke marine diesel engine. The output of the model is the SCR outlet temperature. It is shown that the model can accurately predict the transient inertial response of the SCR during engine acceleration, deceleration, and low load operation.


Author(s):  
Nader R. Ammar

Marine diesel engines are facing challenges to cope with the emission-reduction regulations set by the international maritime organization (IMO). Hydrogen fuel is one of the alternative fuels which can be used to reduce the exhaust gas emissions from ships. The current paper investigates the effect of using diesel-hydrogen dual fuels on the environmental, energetic and exergetic performance parameters of slow speed marine diesel engine. The investigation is performed using Engineering Equation Solver (EES) software package. As a case study, slow speed diesel engine has been investigated. The results obtained revealed that the energetic and exergetic parameters are influenced by engine load and hydrogen substitution percent. The exergy efficiency is increased by 3.65%, 8.20%, 13.99%, and 21.7% for the hydrogen substitution percentages of 10%, 20%, 30%, and 40%, respectively compared with the diesel engine at full load. Environmentally, CO and CO2 emissions are reduced and NOx emissions are increased as the hydrogen energy content increases. Dual fuel engine with input hydrogen energy fractions of 10% and 20% will comply with the required NOx emission regulations set by IMO after using selective catalytic reduction (SCR) system. It will comply with the required regulations with relative percentages of 96.4% and 98.4%, respectively.


Sign in / Sign up

Export Citation Format

Share Document