Dispersion curve analysis method for Lamb wave mode separation

2019 ◽  
Vol 19 (5) ◽  
pp. 1590-1601
Author(s):  
Yue Hu ◽  
Yanping Zhu ◽  
Xiaotong Tu ◽  
Jing Lu ◽  
Fucai Li

The Lamb wave inspection has emerged as a promising method for structural health monitoring and nondestructive testing. However, because of the highly dispersive and multimodal features, the Lamb wave mode separation has become a challenging problem. Based on the dispersion curve analysis, a new signal processing method is proposed in this study to solve this problem. First, a novel function based on the Hessian matrix is constructed to enhance the energy concentration of the dispersion curve in the time–frequency representation to reduce the dispersion effect. Subsequently, the constrained penalty function algorithm is developed for detecting dispersion curves. Finally, a mode reconstruction algorithm is developed to recover Lamb wave modes. The proposed method can separate overlapping wave modes and detect the crack fault by enhancing the time–frequency feature of the Lamb wave signal. Two experiments are carried out to verify the effectiveness of the proposed method for Lamb wave mode separation.

Author(s):  
Zhenhua Tian ◽  
Lingyu Yu

Lamb waves are dispersive and multi-modal. Various wave modes make the interpretation of Lamb wave signal very difficult. It is desired that different modes can be separated for individual analysis. In the this paper, we present our studies on the multimodal Lamb wave propagation and wave mode extraction using frequency-wavenumber analysis. Wave spectrum in the frequency-wavenumber domain shows clear distinction among Lamb wave modes being present. This allows separating them or extracting a desired Lamb wave mode through a novel filtering strategy. Thus a single mode Lamb can be identified and extracted for certain types of damage detection in structural health monitoring (SHM). These concepts are illustrated through experimental testing. A scanning laser Doppler vibrometer is used to acquiring the time-space wavefield regarding the multimodal Lamb wave propagation. Then the recorded wavefield was analyzed in frequency-wavenumber domain and decomposed into different wave modes.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zijian Wang ◽  
Pizhong Qiao ◽  
Binkai Shi

Lamb waves have shown promising advantages for damage identification in thin-walled structures. Multiple modes of Lamb wave provide diverse sensitivities to different types of damage. To sufficiently utilize damage-related wave features, damage indices were developed by using hybrid Lamb wave modes from Hilbert-Huang spectra. Damage indices were defined as surface integrals of Hilbert-Huang spectra on featured regions determined by time and frequency windowing. The time windowing was performed according to individual propagation velocity of different Lamb wave mode, while the frequency windowing was performed according to the frequency of excitation. By summing damage indices for all transmitter-receiver pairs, pixels were calculated to reconstruct a damage map to characterize the degree of damage at each location on structure. Both numerical and experimental validations were conducted to identify a nonpenetrating damage. The results demonstrated that the proposed damage indices using hybrid Lamb wave modes are more sensitive and robust than the one using single Lamb wave mode.


2019 ◽  
Vol 9 (2) ◽  
pp. 257 ◽  
Author(s):  
Christopher Hakoda ◽  
Cliff Lissenden ◽  
Parisa Shokouhi

A recent elastic metamaterial study found that resonators that “clamp” a plate waveguide can be used to create a frequency stop-band gap. The result was that the resonator array can prohibit the propagation of an A0 Lamb wave mode. This study investigates whether the concept can be extended to S0 Lamb wave modes by designing resonators that can prohibit the propagation of S0 Lamb wave modes in a 1-mm aluminum plate waveguide at 50 kHz. The frequency-matched resonators did not reduce the transmitted signal, leading to the conclusion that the design concept of frequency-matched resonators is not always effective. On the other hand, the resonators designed to clamp the upper surface of the plate were very effective and reduced the transmitted signal by approximately 75%.


2021 ◽  
pp. 147592172097928
Author(s):  
Zhi Luo ◽  
Liang Zeng ◽  
Jing Lin

Owing to carrying rich information about structure flaws, broadband Lamb waves are considered as a promising tool for non-destructive testing. However, since every Lamb wave mode has its own dispersion characteristics, the feature extraction among broadband multimodal Lamb wave is challenging. Time–frequency representation is significantly effective to analyze dispersive signals. In this article, taking advantages of the idea of dispersion compensation, two kinds of time–frequency domain dispersion analysis methods for broadband Lamb wave were proposed. The first one is based on the concept of the general parameterized time–frequency transform. A kernel function related to group delay was designed and the time–frequency compensation transform was proposed. The other one combines the segment linear mapping technique and the short-frequency Fourier transform, called the time–frequency de-dispersion transform. Both these two methods work well in representing multimodal Lamb wave signals with high resolution. However, time–frequency de-dispersion transform outperforms in representing multipath Lamb waves than time–frequency compensation transform. Moreover, a mode purification strategy was also proposed for distinguishing the interested mode from interferences. According to verification in synthetic and experimental data, not only the multimodal components but also multipath echoes are represented in time–frequency plane with high resolution. Finally, the proposed method shows a great robustness to inaccuracies in the dispersion data.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. V67-V77 ◽  
Author(s):  
Mamadou S. Diallo ◽  
Michail Kulesh ◽  
Matthias Holschneider ◽  
Frank Scherbaum ◽  
Frank Adler

Complex-trace analysis is the method of choice for analyzing polarized data. Because particle motion can be represented by instantaneous attributes that show distinct features for waves of different polarization characteristics, it can be used to separate and characterize these waves. Traditional methods of complex-trace analysis only give the instantaneous attributes as a function of time or frequency. However, for transient wave types or seismic events that overlap in time, an estimate of the polarization parameters requires analysis of the time-frequency dependence of these attributes. We propose a method to map instantaneous polarization attributes of seismic signals in the wavelet domain and explicitly relate these attributes with the wavelet-transform coefficients of the analyzed signal. We compare our method with traditional complex-trace analysis using numerical examples. An advantage of our method is its possibility of performing the complete wave-mode separation/filtering process in the wavelet domain and its ability to provide the frequency dependence of ellipticity, which contains important information on the subsurface structure. Furthermore, using 2-C synthetic and real seismic shot gathers, we show how to use the method to separate different wave types and identify zones of interfering wave modes.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Measurement ◽  
2015 ◽  
Vol 65 ◽  
pp. 120-128 ◽  
Author(s):  
Xu Baochun ◽  
Yuan Shenfang ◽  
Wang Mulan ◽  
Qiu Lei
Keyword(s):  

Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 677-684 ◽  
Author(s):  
Helle A. Pedersen ◽  
Jérôme I. Mars ◽  
Pierre‐Olivier Amblard

Surface waves are increasingly used for shallow seismic surveys—in particular, in acoustic logging, environmental, and engineering applications. These waves are dispersive, and their dispersion curves are used to obtain shear velocity profiles with depth. The main obstacle to their more widespread use is the complexity of the associated data processing and interpretation of the results. Our objective is to show that energy reassignment in the time–frequency domain helps improve the precision of group velocity measurements of surface waves. To show this, full‐waveform seismograms with added white noise for a shallow flat‐layered earth model are analyzed by classic and reassigned multiple filter analysis (MFA). Classic MFA gives the expected smeared image of the group velocity dispersion curve, while the reassigned curve gives a very well‐constrained, narrow dispersion curve. Systematic errors from spectral fall‐off are largely corrected by the reassignment procedure. The subsequent inversion of the dispersion curve to obtain the shear‐wave velocity with depth is carried out through a procedure combining linearized inversion with a nonlinear Monte Carlo inversion. The diminished uncertainty obtained after reassignment introduces significantly better constraints on the earth model than by inverting the output of classic MFA. The reassignment is finally carried out on data from a shallow seismic survey in northern Belgium, with the aim of determining the shear‐wave velocities for seismic risk assessment. The reassignment is very stable in this case as well. The use of reassignment can make dispersion measurements highly automated, thereby facilitating the use of surface waves for shallow surveys.


Sign in / Sign up

Export Citation Format

Share Document