Climate-adaptive buildings: Systems and materials

2019 ◽  
Vol 17 (2) ◽  
pp. 166-184 ◽  
Author(s):  
Andrzej Zarzycki ◽  
Martina Decker

This article discusses research case studies that deploy physical computing with kinetic, pneumatic, and smart material technologies as vehicles to address the prospects of these technologies and their future impact on resilient and high-performance buildings. It looks into conceptual aspects of an integrated hybrid system that combines both computation approaches and unique opportunities inherent to these hybrid designs.

2006 ◽  
Author(s):  
P. Torcellini ◽  
S. Pless ◽  
M. Deru ◽  
B. Griffith ◽  
N. Long ◽  
...  

2019 ◽  
pp. 123-130

The scientific research works concerning the field of mechanical engineering such as, manufacturing machine slate, soil tillage, sowing and harvesting based on the requirements for the implementation of agrotechnical measures for the cultivation of plants in its transportation, through the development of mastering new types of high-performance and energy-saving machines in manufacturing machine slate, creation of multifunctional machines, allowing simultaneous soil cultivation, by means of several planting operations, integration of agricultural machine designs are taken into account in manufacturing of the local universal tractor designed basing on high ergonomic indicators. For this reason, this article explores the use of case studies in teaching agricultural terminology by means analyzing the researches in machine building. Case study method was firstly used in 1870 in Harvard University of Law School in the United States. Also in the article, we give the examples of agricultural machine-building terms, teaching terminology and case methods, case study process and case studies method itself. The research works in the field of mechanical engineering and the use of case studies in teaching terminology have also been analyzed. In addition, the requirements for the development of case study tasks are given in their practical didactic nature. We also give case study models that allow us analyzing and evaluating students' activities.


2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


2013 ◽  
Vol 652-654 ◽  
pp. 2153-2158
Author(s):  
Wu Ji Jiang ◽  
Jing Wei

Controlling the tooth errors induced by the variation of diameter of grinding wheel is the key problem in the process of ZC1 worm grinding. In this paper, the influence of tooth errors by d1, m and z1 as the grinding wheel diameter changes are analyzed based on the mathematical model of the grinding process. A new mathematical model and truing principle for the grinding wheel of ZC1 worm is presented. The shape grinding wheel truing of ZC1 worm is carried out according to the model. The validity and feasibility of the mathematical model is proved by case studies. The mathematical model presented in this paper provides a new method for reducing the tooth errors of ZC1 worm and it can meet the high-performance and high-precision requirements of ZC1 worm grinding.


Sign in / Sign up

Export Citation Format

Share Document