scholarly journals Parametric point-cloud slicing for facade retrofitting

2021 ◽  
pp. 147807712110297
Author(s):  
Oscar Gámez Bohórquez ◽  
William Derigent ◽  
Hind Bril El-Haouzi

This work presents a method for retrieving 3D building contours usable in facade retrofitting projects, which uses a parametric modeling workflow that utilizes a point-cloud slicing method to retrieve such 3D contours. Since current commitments by European governments seek to reduce energy consumption as a means to reduce carbon emissions from building stock by 2050, facade retrofitting appears as an alternative for addressing operational and embedded building emissions. Within such a context, the main contribution of this work consists of a workflow and a 3D reconstruction solution that uses a parametric environment for capturing building topology and bypassing ground-level occlusions. A real case study and a strategy for converting 3D building contours into Industry Foundation Classes entities, directly from the parametric modeling environment, served as a scenario for testing the capabilities of a Grasshopper solution and open new perspectives for this approach.

Arsitektura ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 199
Author(s):  
Annisa Fikriyah Tasya ◽  
Purwanita Setijanti ◽  
Asri Dinapradipta

<p class="Abstract"><em>At present energy efficiency is the main target to reduce building operating costs and achieve sustainability. The use of energy in buildings can be done through retrofitting. In addition, retrofitting has the potential to reduce carbon emissions, but there are also those who have to release some building features if necessary, energy features that are applied to existing buildings that have been issued to carry out renovations. Building reinforcement is a complex act, with various criteria that must be met with each other to achieve sustainable use of buildings. This article discusses the benefits, criteria, analytic methods, and decision making processes used to improve commercial buildings. The main criteria for increased energy consumption. Some other criteria are building materials, economy and occupants' needs. The analytical method for estimating or measuring the increase in retrofit that will be discussed in this article is a simulation of building energy. This method is widely used because it can predict the condition of buildings in the future. Each retrofit step is chosen and approved by the several factors; regulations, risks, business sustainability, knowledge, awareness and occupant demand. The retrofit valuation process is based on the value at which financial performance is taken into account. Retrofitting carried out on commercial buildings, applied with care, not only provides opportunities to reduce energy consumption and carbon emissions, but can also increase the value of these properties.</em><em></em></p>


2010 ◽  
Vol 16 (4) ◽  
pp. 567-576 ◽  
Author(s):  
Jorge S. Carlos ◽  
Helena Corvacho

A study on thermal retrofit of Portuguese elementary school buildings is presented. The type of school under analysis is one adopted by a large construction campaign that began in the 1940's. This building stock has a very poor thermal performance and their retrofit was evaluated starting with a case study of a school in the central region of Portugal, where some experimental measures were performed and a calculation method was applied for the heating energy consumption estimation. A solution for the thermal retrofit of the school building external envelope was optimized and the effect on heating energy consumption was evaluated, using ECOTECT, resulting in a reduction of 52% of heating energy needs. The national impact of the thermal retrofit of the whole building stock was characterised in terms of energy savings. Finally, the pre‐heating of the ventilation air was also tested as a complementary measure and its effect evaluated. The solution tested may provide up to 1000 kWh/year of extra heat gains by pre‐heating the ventilation air. It must be underlined though that the performance of these systems is dependent on the thermal properties of their components so higher reductions can be achieved with the improvement of these properties. Santrauka Straipsnyje pateikiami Portugalijos pradines mokyklos šiluminio atnaujinimo tyrimai. Analizuojamos mokyklos tipas yra vienas iš taikytu po 1940 metu prasidejusioje plačioje statybos kampanijoje. Šios pastatu grupes šilumines charakteristikos yra labai prastos. Ju atnaujinimo vertinimas buvo pradetas nuo centrineje Portugalijoje esančios mokyklos, kurioje buvo igyvendintos kai kurios eksperimentines priemones, ir energijos sanaudoms nustatyti pritaikytas skaičiavimo metodas. Pastato išoriniu atitvaru šiluminio atnaujinimo sprendimas buvo optimizuotas ir jo itaka šilumines energijos sanaudoms nustatyta naudojant ECOTECT. Šilumines energijos poreikis sumažejo 52 %. Iš viso pastatu fondo šiluminio atnaujinimo itaka nacionaliniu mastu vertinta sutaupytos energijos kiekiu. Pabaigoje kaip papildoma priemone buvo išbandytas pirminis vedinamo oro pašildymas, nustatytas jo naudingumas. Išbandytasis pirminis vedinamo oro pašildymas gali suteikti iki 1000 kWh/metus papildomo išsiskiriančio šilumos kiekio. Pabrežtina, kad nors šiu sistemu veikimo charakteristikos priklauso nuo ju komponentu šiluminiu savybiu, gerinant šias savybes galima daugiau sumažinti energijos sanaudu.


2016 ◽  
Vol 11 (3) ◽  
pp. 126-142
Author(s):  
Changhai Peng ◽  
Jianqiang Yang ◽  
Jinfu Huang

Buildings are responsible for more than forty percent of global energy consumption and as much as one third of global greenhouse gas emissions. Meanwhile, the energy conservation and exhaust reduction of a building can be easily understood by accurately calculating a building's carbon emissions during its operational stage. In the present study, a system dynamics (SD) approach to calculate the energy consumption and carbon emissions from a building during its operational stage is quantitatively developed through a case study on an office building in Nanjing. The obtained results demonstrate that: a) the difference between the results of SD and that of EnergyPlus is so small that a SD approach is acceptable; b) the variation between the real monitored data and that of simulation by SD and EnergyPlus is reasonable; c) the physical meanings of the variables in the SD model are clear; d) the parameters of the SD model and the relationships between the variables can be determined by a qualitative-and-quantitative combined analysis.


2018 ◽  
Vol 10 (10) ◽  
pp. 3507 ◽  
Author(s):  
Daniel Sánchez-García ◽  
Carlos Rubio-Bellido ◽  
Jesús Pulido-Arcas ◽  
Fco. Guevara-García ◽  
Jacinto Canivell

Comfort analysis of existing naturally ventilated buildings located in mild climates, such as the ones in the Mediterranean zones, offer room for a reduction in the present and future energy consumption. Regarding Spain, most of the present building stock was built before energy standards were mandatory, let alone considerations about global warming or adaptive comfort. In this context, this research aims at assessing adaptive thermal comfort of inhabitants of extant apartments building in the South of Spain per EN 15251:2007 and ASHRAE 55-2013. The case study is statistically representative housing built in 1973. On-site monitoring of comfort conditions and computer simulations for present conditions have been carried out, clarifying the degree of adaptive comfort at present time. After that, additional simulations for 2020, 2050, and 2080 are performed to check whether this dwelling will be able to provide comfort considering a change in climate conditions. As a result, the study concludes that levels of adaptive comfort can be considered satisfactory at present time in these dwellings, but not in the future, when discomfort associated with hot conditions will be recurrent. These results provide a hint to foresee how extant dwellings, and also dwellers, should adapt to a change in environmental conditions.


2020 ◽  
Vol 10 (13) ◽  
pp. 4558 ◽  
Author(s):  
Antonio E. Masdías-Bonome ◽  
José A. Orosa ◽  
Diego Vergara

When designing or retrofitting a building, not too many tools let architects and engineers to define the optimal conditions to reduce energy consumption with the minimal economic investment. This is because different software resources must be employed and an iterative calculation must be done which, most of times, is not possible. The present study aims to define an original methodology that let researchers and architects to select the best option between different possibilities. To reach this objective, Monte Carlo method is employed on the ISO 13790 standard reaching the probability distribution of the energy consumption of each building after each possible modification. From main results, two mathematical models were obtained from a real case study showing the relation between annual energy consumption and economic investment of each different building retrofits. What is more, in disagreement with the expected result, the best retrofit option was not the one with the highest cost and qualities. In conclusion, this methodology can be a useful tool for researchers and professionals to improve their decision-making.


2021 ◽  
Vol 13 (5) ◽  
pp. 2987
Author(s):  
Raúl Castaño-Rosa ◽  
Roberto Barrella ◽  
Carmen Sánchez-Guevara ◽  
Ricardo Barbosa ◽  
Ioanna Kyprianou ◽  
...  

The intensity and duration of hot weather and the number of extreme weather events, such as heatwaves, are increasing, leading to a growing need for space cooling energy demand. Together with the building stock’s low energy performance, this phenomenon may also increase households’ energy consumption. On the other hand, the low level of ownership of cooling equipment can cause low energy consumption, leading to a lack of indoor thermal comfort and several health-related problems, yet increasing the risk of energy poverty in summer. Understanding future temperature variations and the associated impacts on building cooling demand will allow mitigating future issues related to a warmer climate. In this respect, this paper analyses the effects of change in temperatures in the residential sector cooling demand in 2050 for a case study of nineteen cities across seven countries: Cyprus, Finland, Greece, Israel, Portugal, Slovakia, and Spain, by estimating cooling degree days and hours (CDD and CDH). CDD and CDH are calculated using both fixed and adaptive thermal comfort temperature thresholds for 2020 and 2050, understanding their strengths and weaknesses to assess the effects of warmer temperatures. Results suggest a noticeable average increase in CDD and CDH values, up to double, by using both thresholds for 2050, with a particular interest in northern countries where structural modifications in the building stock and occupants’ behavior should be anticipated. Furthermore, the use of the adaptive thermal comfort threshold shows that the projected temperature increases for 2050 might affect people’s capability to adapt their comfort band (i.e., indoor habitability) as temperatures would be higher than the maximum admissible values for people’s comfort and health.


Sign in / Sign up

Export Citation Format

Share Document