scholarly journals Use of 3-D navigation to target the site of autologous blood installation for lung volume reduction in bullous emphysema

2020 ◽  
Vol 17 ◽  
pp. 147997312090355
Author(s):  
Juergen Hetzel ◽  
Michael Boeckeler ◽  
Richard A Lewis ◽  
Marius Horger ◽  
Maik Haentschel

Bronchoscopic lung volume reduction (BLVR) using intrabullous autologous blood instillation has been reported in single cases where other techniques are not possible. We present the use of three-dimensional navigation to instill autologous blood into emphysematous bullae for BLVR. A 62-year-old man presented with increasing dyspnea, due to emphysema with a conglomerate of giant bullae with two particularly large bullae. Surgical treatment was refused, so bronchoscopic autologous blood instillation into the bronchial segment leading to the large bullae was attempted, but was unsuccessful; blood failed to penetrate into the bullous cavity. Dyspnea worsened over the following year. We therefore performed another bronchoscopy and punctured a large bulla with a needle and created a tunnel from the central airways. Puncture position and direction were determined using a prototype of an electromagnetic navigation system. Under fluoroscopic guidance, a catheter was placed via the tunnel into the bulla and blood was instilled. This resulted in an almost complete shrinkage of the bullae, reduction of residual volume, and marked improvement in dyspnea within 4 months. To our knowledge, this is the first reported case of successful BLVR by navigated bronchoscopy with transbronchial puncture, dilatation, and autologous blood instillation into a giant bulla.

CHEST Journal ◽  
1999 ◽  
Vol 116 (6) ◽  
pp. 1809-1811 ◽  
Author(s):  
Mobeen Iqbal ◽  
Leonard Rossoff ◽  
Kerry Mckeon ◽  
Michael Graver ◽  
Steven M. Scharf

Thorax ◽  
2008 ◽  
Vol 63 (6) ◽  
pp. 564-565 ◽  
Author(s):  
S Kanoh ◽  
H Kobayashi ◽  
K Motoyoshi

Bronchoscopic treatment for emphysematous lung diseases has attracted clinical attention, and several different approaches are being investigated. We present a case of emphysematous bullae that was effectively treated with a newly developed bronchoscopic intervention, autologous blood injection. A 59-year-old man was referred to our institution with exertional dyspnoea. Chest CT showed emphysema and bullae with a diameter of 12 cm in the right upper lobe. Bronchoscopic treatment was introduced as an alternative to surgery. Autologous blood and fibrinogen solution were infused into bullae via the transbronchial catheter, under fluoroscopic guidance. Post-treatment CT showed marked contraction of bullae to a diameter of 3 cm, corresponding to a volume reduction of 800 ml on body plethysmography. A significant reduction in dyspnoea was also noted. This therapeutic approach is less invasive and may represent a good option for reducing lung volume.


2020 ◽  
Vol 6 (3) ◽  
pp. 00305-2020
Author(s):  
Claudio Caviezel ◽  
Tamara Froehlich ◽  
Didier Schneiter ◽  
Urs Muehlematter ◽  
Thomas Frauenfelder ◽  
...  

BackgroundThe key issues for performing lung volume reduction surgery (LVRS) is the identification of the target zones. Recently introduced three-dimensional computed tomography rendering methods are used to identify the morphological distribution and its severity of lung emphysema by densitometry. We demonstrate a new software for emphysema imaging and show the pre- and post-operative results in patients undergoing LVRS planned based on this new technology.MethodsA real-time three-dimensional image analysis software system was used pre- and 3 months post-operatively in five patients with heterogeneous emphysema and a single patient with homogeneous morphology scheduled for LVRS. Focus was on low attenuation areas with <950 HU, distribution on both lungs and the value of the three-dimensional images for planning surgery. Functional outcome was assessed by pulmonary function tests after 3 months.ResultsFive patients underwent bilateral LVRS and one patient had unilateral LVRS. All patients showed a median increase in forced expiratory volume in 1 s of 70% (range 30–120%), compared with baseline values. Hyperinflation (expressed as residual volume/total lung capacity ratio) was reduced by 30% (range 5–32%). In the patients with heterogeneous emphysema, the pre- and post-operative computed tomography scans and the densitometries showed a decrease in low attenuation areas by 23% (right side) and by 17% (left side), respectively.ConclusionWe demonstrate three-dimensional computed tomography-rendered images for planning personalised remodelling of hyperinflated lungs using LVRS. This user-friendly software has the potential to assist surgeons and interventional pulmonologists to select patients and to visualise target areas in LVRS procedures.


2021 ◽  
Vol 30 (162) ◽  
pp. 210142
Author(s):  
Mugdha M. Joglekar ◽  
Dirk-Jan Slebos ◽  
Jeroen Leijten ◽  
Janette K. Burgess ◽  
Simon D. Pouwels

Several bronchoscopic lung volume reduction (BLVR) treatments have been developed to reduce hyperinflation in emphysema patients. Lung bio-adhesives are among the most promising new BLVR treatment options, as they potentially provide a permanent solution for emphysematous patients after only a single application. To date, bio-adhesives have mainly been used as haemostats and tissue sealants, while their application in permanently contracting and sealing hyperinflated lung tissue has recently been identified as a novel and enticing opportunity. However, a major drawback of the current adhesive technology is the induction of severe inflammatory responses and adverse events upon administration. In our review, we distinguish between and discuss various natural, semi-synthetic and synthetic tissue haemostats and sealants that have been used for pulmonary applications such as sealing air/fluid leaks. Furthermore, we present an overview of the different materials including AeriSeal and autologous blood that have been used to achieve lung volume reduction and discuss their respective advantages and drawbacks. In conclusion, we describe the key biological (therapeutic benefit and biocompatibility) and biomechanical (degradability, adhesive strength, stiffness, viscoelasticity, tunability and self-healing capacity) characteristics that are essential for an ideal lung bio-adhesive material with the potential to overcome the concerns related to current adhesives.


Pneumologie ◽  
2014 ◽  
Vol 68 (S 01) ◽  
Author(s):  
C Pizarro ◽  
R Schueler ◽  
C Hammerstingl ◽  
J Kreuz ◽  
U Juergens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document