Recommendations for Mechanical Ventilation during Donor Care

2000 ◽  
Vol 10 (1) ◽  
pp. 33-40 ◽  
Author(s):  
David J. Powner ◽  
Joseph M. Darby ◽  
Susan A. Stuart

The organ procurement coordinator usually directs adjustments to the mechanical ventilator during donor care. It is often difficult to achieve optimal oxygen uptake and carbon dioxide removal while avoiding barotrauma or undesirable effects on the cardiac output. Interrelationships among a variety of ventilator parameters must be understood in order to achieve the desired goal of providing the best organs possible. These recommendations review the key ventilator parameters of tidal volume; positive end-expiratory pressure; auto–positive end-expiratory pressure; fraction of inspired oxygen; and flowrate and frequency and their interactions in controlling peak, plateau, and mean and end-expiratory airway pressures.

2021 ◽  
Vol 10 (12) ◽  
pp. 2656
Author(s):  
Alberto Fogagnolo ◽  
Federica Montanaro ◽  
Lou’i Al-Husinat ◽  
Cecilia Turrini ◽  
Michela Rauseo ◽  
...  

Mechanical ventilation (MV) is still necessary in many surgical procedures; nonetheless, intraoperative MV is not free from harmful effects. Protective ventilation strategies, which include the combination of low tidal volume and adequate positive end expiratory pressure (PEEP) levels, are usually adopted to minimize the ventilation-induced lung injury and to avoid post-operative pulmonary complications (PPCs). Even so, volutrauma and atelectrauma may co-exist at different levels of tidal volume and PEEP, and therefore, the physiological response to the MV settings should be monitored in each patient. A personalized perioperative approach is gaining relevance in the field of intraoperative MV; in particular, many efforts have been made to individualize PEEP, giving more emphasis on physiological and functional status to the whole body. In this review, we summarized the latest findings about the optimization of PEEP and intraoperative MV in different surgical settings. Starting from a physiological point of view, we described how to approach the individualized MV and monitor the effects of MV on lung function.


1980 ◽  
Vol 49 (5) ◽  
pp. 863-868 ◽  
Author(s):  
R. P. Adams ◽  
H. G. Welch

Six subjects rode a bicycle ergometer on three occasions breathing 17, 21, or 60% oxygen. In addition to rest and recovery periods, each subject worked for 10 min at 55% of maximal oxygen uptake (VO2 max) and then to exhaustion at approximately 90% VO2 max. Performance time, inspired and expired gas fractions, ventilation, and arterialized venous oxygen tension (PO2), carbon dioxide tension (PCO2), lactate, and pH were measured. VO2, carbon dioxide output, [H+]a, and [HCO3-]a were calculated. Performance times were longer in hyperoxia than in normoxia or hypoxia. However, VO2 was not different at exhaustion in normoxia compared with hypoxia or hyperoxia. During exercise, hypoxia was associated with increased lactate levels and decreased [H+]a, PCO2, and [HCO3-]a. The opposite trends were generally associated with hyperoxia. At exhaustion, [H+]a was not different under any inspired oxygen fraction. These results support the contention that oxygen is not limiting for exercise of this intensity and duration. The results also suggest that [H+] is a possible limiting factor and that the effect of oxygen on performance is perhaps related to control of [H+].


Author(s):  
Hong Nyun Kim ◽  
Myung Hwan Bae ◽  
Bo Eun Park ◽  
Jaehee Lee

A patient with coronavirus disease 2019 showed complete atrioventricular block on electrocardiogram. The patient was undergoing mechanical ventilator treatment for severe hypoxia. Intrathoracic pressure was reduced by adjusting the tidal volume and the positive end-expiratory pressure of the mechanical ventilator. After that, complete atrioventricular block didn’t occur during the hospitalization.


Sign in / Sign up

Export Citation Format

Share Document