Multilayer nonwoven lining materials made of wool and cotton for clothing and footwear

2022 ◽  
pp. 152808372110608
Author(s):  
Adham Rafikov ◽  
Nodir Mirzayev ◽  
Sevara Alimkhanova

Five types of multilayer nonwovens for clothing and footwear parts were obtained by the adhesive bonding method. The thickest middle layer of the material consists of evenly laid coarse camel or sheep fibers or of reconstituted cotton fibers from flaps, the upper and lower layers consist of knitwear, and polymer adhesive is located between the layers. The layers are bonded by thermal pressing at a temperature of 150 ± 5°C for 2.0 ± 0.2 min. The microstructure and morphology of fibers, polymer adhesive, and multilayer nonwoven fabric were investigated by FT-IR spectroscopy, SEM, and X-ray phase analysis. The chemical interaction between wool fibers and polymer adhesive, the geometric dimensions and shape of the fibers, the structure and morphology of the cross section of the layers of the material, and the change in the degree of crystallinity of the material have been established. The investigated coarse and thick fibers of camel and sheep wool are more suitable for the production of nonwoven textile material. In the process of thermal exposure, the molten polymer diffuses into the structure of the nonwoven layer and knitted fabric. The diffusion and excellent adhesion of the molten polymer to the fibers ensures the solidity and strength of the composite. The developed design provides high strength of the material as a whole and adhesive strength between layers, high heat-retaining properties, and the use of a mesh adhesive film provides sufficient air and vapor permeability.

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 826
Author(s):  
Runmeng Qiao ◽  
Xin Wang ◽  
Guangjiong Qin ◽  
Qi Liu ◽  
Jialei Liu ◽  
...  

White pollution caused by agricultural films has recently attracted great attention. In some areas, the content of micro plastic in the soil has reached 30 kg/ha. The most effective way to solve this problem is to replace traditional polyethylene agricultural films with degradable agricultural films. The consistency between the degradation rate and the crop growth period has become the biggest obstacle for the wide application of such novel agricultural films. In this paper, crystallinity regulation is used to adjust the functional period of degradable agricultural films. In addition, an organic nucleating agent of polyethylenimine (PEI) is selected by doping it to poly(butylene adipate-co-terephthalate) (PBAT) polymers using a double-screw extruder. The PBAT doped with 1 wt% PEI films revealed a significant increase in mechanical properties, water holding capacity, and crystallinity compared with the pure PBAT film. There was a 31.9% increase in tensile strength, a 30.5% increase in elongation at break, a 29.6% increase in tear resistance, a 30.9% decrease in water vapor permeability, and a 3.1% increase in crystallinity. Furthermore, the induction period of PBAT doped with 1 wt% PEI under photoaging (without soil) was about 160 h longer than PBAT film, and the experienced biodegradation in soil (without light) was 1 week longer than PBAT film. Experimental results exhibited that the change of degradation degree was linearly proportional to the degree of crystallinity. This study proposes a convenient, low-cost, and effective method to adjust the crystallinity and change the degradation rate.


2008 ◽  
pp. 249-259 ◽  
Author(s):  
James Jian‐Qiang Lu ◽  
Tim S. Cale ◽  
Ronald J. Gutmann

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Sofia Papadimitriou ◽  
George Z. Papageorgiou ◽  
Feras I. Kanaze ◽  
Manolis Georgarakis ◽  
Dimitrios N. Bikiaris

Biocompatible poly(propylene-co-butylene succinate) (PPBSu) copolyesters, containing up to 50 mol% butylene succinate units, were synthesized by the two-stage melt polycondensation method (esterification and polycondensation). The copolymers were fully characterized and biocompatibility studies were also performed. They were proved to be biocompatible and they were used as polymer matrices for the preparation of drug loaded nanoparticles. Nimodipine was selected as a model hydrophobic poorly water soluble drug. From the results obtained by dynamic light scattering (DLS) and scanning electron microscopy (SEM), drug loaded copolymer nanoparticles were found to exhibit a spherical shape and their mean diameter appeared in the range of 180–200 nm. Fourier Transformation-Infrared Spectroscopy (FTIR) spectra indicated that no chemical interaction between the drug and the matrix could be justified, while Wide-Angle X-Ray Diffraction (WAXD) patterns proved a low degree of crystallinity of Nimodipine in the nanoparticles. The release behavior of the model drug from nanoparticles was also investigated in order to identify modifications and find out any possible correlation between the chemical composition of the polymer matrix and the drug release rates.


Author(s):  
Michael Gallagher ◽  
Ed Anzures ◽  
Robert Auger ◽  
Rosemary Bell ◽  
Berry Paul ◽  
...  

As the electronics industry reaches the limits of lithographic processing at sub-10nm dimensions, alternate approaches to meet the demand for increasing device density, reducing package size and improving device performance are being explored. Die stacking approaches to reduce the path length between CPU, GPU and memory devices using a heterogeneous 3DIC chip stacking technology have recently been announced, while memory manufacturers have been creating HBM die stacks for use in servers and highspeed applications. At DuPont Electronics & Imaging (E&I), we have been working to enable 3DIC technology through the development of chemicals and processes such as CMP pads and slurries for polishing all the critical materials, chemical cleaners to remove residues, and photoresists to pattern TSVs, pads and pillars. In addition to these materials, E&I also provides permanent materials for hybrid bonding, including electrodeposited copper for TSVs, pads and pillars as well as tin-silver for pillar capping. Another critical part of hybrid bonding is the adhesive bonding material, which needs to be planarized and yet still have sufficient flow to bond at the same time as the Cu-Cu or Cu-SnAg interconnect. This paper will demonstrate how these critical materials can be used together to fabricate 3DIC devices using a conventional bonding tool. Processing of wafers with sub-20 micron pillars has been completed with good metal joining and void-free bonding of the BCB-based polymer adhesive.


2010 ◽  
Vol 139-141 ◽  
pp. 374-377
Author(s):  
Jun Zhang ◽  
Zhong Yao Zhao ◽  
Xin Li Wei

A modified cohesive zone interface model that has a damage factor couple with the thermal cycle and humidity aging was proposed. The damage factor not only can change the cohesive zone strength acting but also can effect on the energies of separation. The modified cohesive zone interfacial model is developed and implemented in ABAQUS, as a user element subroutine, to simulate the peeling process for the specimen bonding by anisotropic conducive adhesive film (ACF) under the thermal cycle and humidity tests. Finite element explicit code and the constitutive relation of this element has been defined by the user-defined mechanical material behaviour (VUMAT). The bulk material element selected is a 4-node bilinear plane stress quadrilateral element, and the reduced integration and hourglass control are also adopted. The numerical simulated results accorded well to the experiments to illustrate the validity of the new model.


Author(s):  
Markéta Zikmundová ◽  
Klára V. Machalická ◽  
Martina Eliášová ◽  
Miroslav Vokáč

Adhesive bonding is commonly used in the automotive and aerospace industry, where it has proved its advantages. Nowadays, the bonded joints are starting increasingly used in civil engineering, where they can be applied in façade structure. Traditionally used structural silicones are resistant to the external environment, but their low strength and elasticity do not meet the requirements of civil engineering. The greater spread of higher strength adhesives such as acrylates or polyurethanes is hampered by the lack of knowledge of their ageing resistance. The paper is focused on the experimental analysis of a double-lap shear joints of Silane Terminated Polymer (STP) adhesive applied in joints with aluminium and Zn-electroplated steel substrates with various surface treatments. The specimens were exposed to artificial ageing according to the technical regulations of the Timber Research and Development Institute in Prague. According to this regulation, specimens were exposed to changing of high and low temperatures, UV-radiation and humidity. This ageing should simulate 5 years in the climatic environment of Central Europe. Specimens exposed to laboratory ageing are compared with reference set of test specimens that were not artificially aged. STP demonstrated excellent resistance to laboratory ageing.


Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 171-179
Author(s):  
Fangli Sun ◽  
Guigui Wan ◽  
Yan Zhang ◽  
Charles E. Frazier

AbstractThe basic properties of moso bamboo (MB) were determined according to the International Organization for Standardization (ISO) standards and its rheological behavior was studied by dynamic mechanical analysis (DMA) in the tensile torsion stress mode after plasticization with ethylene glycol (EG). Results show that the density and the apparent lignin content of MB increases and the degree of crystallinity decreases with increasing age. Storage modulus (G′) increases from 1- to 3-year-old MB, and then decreases again with age. When the bamboo culm with the inner and outer surface planed off was divided into three layers in the radial direction, the G′ of the outer layer was always higher than that of the middle and inner layers. The glass transition temperature (Tg) of MB plasticized with EG is about 10°C lower than the water plasticized ones, and the Tg of the outer and inner layers was nearly 1–2°C higher than that of the middle layer. The overall trend of basic properties and rheological behaviors seems to exhibit a discontinuity at 3 years, which might reflect the growth of MB and mainly the thickening of cell walls.


1962 ◽  
Vol 35 (1) ◽  
pp. 153-165 ◽  
Author(s):  
J. A. Barrie ◽  
B. Platt

Abstract An important property of a polymer matrix which has a marked effect on the diffusion and sorption of vapors in polymer films is the degree of crystallinity. It is well established that the presence of crystallites leads to a decrease in both vapor solubility and permeability. Even so it is only recently that attempts have been made to relate these properties quantitatively with the degree of crystallinity. Most of this work was conducted with unstrained crystalline material, and relatively few data are available for stretched polymers either crystalline or noncrystalline. It was the main object of this work to investigate in more detail interrelations of vapor solubility, vapor permeability, and degree of crystallinity or orientation. The system hydrocarbon vapor-vulcanized natural rubber has been extensively characterized with respect to vapor permeability and solubility for regions of low penetrant concentration in the temperature range 30–60° C. As such it affords a useful reference state for studying the effect on either of these properties of a given degree of crystallinity or of orientation induced by subjecting the rubber to a simple elongation. Further, compared with unstretched semicrystalline polymers, the morphology of stretched rubber is comparatively straightforward, complex spherulitic growths being absent. In Part I of this paper we present and discuss solubility data obtained for isomeric hydrocarbons in stretched vulcanized natural rubber. The corresponding diffusion data are dealt with in Part II (following article, this issue). Throughout the investigation the degree of crosslinking was maintained constant.


Sign in / Sign up

Export Citation Format

Share Document