scholarly journals High-resolution 3D tractography of fibrous tissue based on polarization-sensitive optical coherence tomography

2019 ◽  
Vol 245 (4) ◽  
pp. 273-281 ◽  
Author(s):  
Gang Yao ◽  
Dongsheng Duan

Fibrous tissues play important roles in many parts of the body. Their highly organized directional structure is essential in achieving their normal biomechanical and physiological functions. Disruption of the typical fiber organization in these tissues is often linked to pathological changes and disease progression. Tractography is a specialized imaging method that can reveal the detailed fiber architecture. Here, we review recent developments in high-resolution optical tractography using Jones matrix polarization-sensitive optical coherence tomography. We also illustrate the use of this new tractography technology for visualizing depth-resolved, three-dimensional fibrous structures and quantifying tissue damages in several major fibrous tissues. Impact statement Organized fiber structure plays an essential role in realizing normal biological functions in fibrous tissues. A thorough understanding of the structure–function relationship in these tissues is crucial for developing effective technology to diagnose and treat diseases. Tractography imaging is an effective tool in visualizing and quantifying fiber architecture in fibrous tissues. This review describes a recently developed tractography technology that has shown great promise for fast image of 3D fiber organization with microscopic details.

2011 ◽  
Vol 97 (4) ◽  
pp. 534.1-536 ◽  
Author(s):  
Mervyn G Thomas ◽  
Anil Kumar ◽  
John R Thompson ◽  
Frank A Proudlock ◽  
Kees Straatman ◽  
...  

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yi Sun ◽  
Jianfeng Wang ◽  
Jindou Shi ◽  
Stephen A. Boppart

AbstractPolarization-sensitive optical coherence tomography (PS-OCT) is a high-resolution label-free optical biomedical imaging modality that is sensitive to the microstructural architecture in tissue that gives rise to form birefringence, such as collagen or muscle fibers. To enable polarization sensitivity in an OCT system, however, requires additional hardware and complexity. We developed a deep-learning method to synthesize PS-OCT images by training a generative adversarial network (GAN) on OCT intensity and PS-OCT images. The synthesis accuracy was first evaluated by the structural similarity index (SSIM) between the synthetic and real PS-OCT images. Furthermore, the effectiveness of the computational PS-OCT images was validated by separately training two image classifiers using the real and synthetic PS-OCT images for cancer/normal classification. The similar classification results of the two trained classifiers demonstrate that the predicted PS-OCT images can be potentially used interchangeably in cancer diagnosis applications. In addition, we applied the trained GAN models on OCT images collected from a separate OCT imaging system, and the synthetic PS-OCT images correlate well with the real PS-OCT image collected from the same sample sites using the PS-OCT imaging system. This computational PS-OCT imaging method has the potential to reduce the cost, complexity, and need for hardware-based PS-OCT imaging systems.


Ophthalmology ◽  
2013 ◽  
Vol 120 (5) ◽  
pp. 883-891 ◽  
Author(s):  
Mohamed Abou Shousha ◽  
Carol L. Karp ◽  
Ana Paula Canto ◽  
Kelly Hodson ◽  
Patrick Oellers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document