Portal Vein Aneurysm Treated With Trans-Jugular Intrahepatic Porto-Systemic Shunt

2021 ◽  
pp. 153857442110232
Author(s):  
Robert Dunlap ◽  
Sean Golden ◽  
Gray R. Lyons

Portal vein aneurysm (PVA) is a rare entity that can lead to hemorrhage or thrombosis. Although there is no standard treatment, most cases can be managed conservatively; intervention is reserved for symptomatic or enlarging aneurysms. For patients who are not surgical candidates due to cirrhosis and portal hypertension, endovascular creation of a trans-jugular intrahepatic porto-systemic shunt (TIPS) is an option to reduce portal venous pressure. This report describes a case of an enlarging PVA successfully treated with TIPS in a patient with cryptogenic cirrhosis.

2003 ◽  
Vol 284 (6) ◽  
pp. R1580-R1585 ◽  
Author(s):  
Susan Kaufman ◽  
Jody Levasseur

We have previously shown that intrasplenic fluid extravasation is important in controlling blood volume. We proposed that, because the splenic vein flows in the portal vein, portal hypertension would increase splenic venous pressure and thus increase intrasplenic microvascular pressure and fluid extravasation. Given that the rat spleen has no capacity to store/release blood, intrasplenic fluid extravasation can be estimated by measuring the difference between splenic arterial inflow and venous outflow. In anesthetized rats, partial ligation of the portal vein rostral to the junction with the splenic vein caused portal venous pressure to rise from 4.5 ± 0.5 to 12.0 ± 0.9 mmHg ( n = 6); there was no change in portal venous pressure downstream of the ligation, although blood flow in the liver fell. Splenic arterial flow did not change, but the arteriovenous flow differential increased from 0.8 ± 0.3 to 1.2 ± 0.1 ml/min ( n = 6), and splenic venous hematocrit rose. Mean arterial pressure fell (101 ± 5.5 to 95 ± 4 mmHg). Splenic afferent nerve activity increased (5.6 ± 0.9 to 16.2 ± 0.7 spikes/s, n = 5). Contrary to our hypothesis, partial ligation of the portal vein caudal to the junction with the splenic vein (same increase in portal venous pressure but no increase in splenic venous pressure) also caused the splenic arteriovenous flow differential to increase (0.6 ± 0.1 to 1.0 ± 0.2 ml/min; n = 8). The increase in intrasplenic fluid efflux and the fall in mean arterial pressure after rostral portal vein ligation were abolished by splenic denervation. We propose there to be an intestinal/hepatic/splenic reflex pathway, through which is mediated the changes in intrasplenic extravasation and systemic blood pressure observed during portal hypertension.


1992 ◽  
Vol 83 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Pi-Chin Yu ◽  
Jon-Son Kuo ◽  
Han-Chieh Lin ◽  
May C. M. Yang

1. Effects of endothelin-1 on systemic arterial blood pressure, heart rate and portal venous pressure were compared in normal Sprague-Dawley rats and rats with portal hypertension induced by CCl4 and partial portal vein ligation. 2. Endothelin-1 produced biphasic effects on systemic blood pressure and portal venous pressure in all three groups of rats. However, the magnitude of the changes in blood pressure was less in portal hypertensive rats. 3. The ability of endothelin-1 to increase the portal venous pressure was also significantly diminished in portal hypertensive rats. On the other hand, the initial decrease in portal pressure was augmented in rats with partial portal vein ligation, and disappeared at higher dosage in CCl4-treated rats. 4. In accordance with the pressure recording in vivo, the dose-response vasoconstrictive activity of endothelin-1 was significantly attenuated in the intrahepatic vasculature. 5. The plasma immunoreactive endothelin concentration was significantly higher (5.55 ± 0.81 fmol/ml) in Sprague-Dawley rats than in CCl4-treated rats (2.83 ± 0.56 fmol/ml) and rats with partial portal vein ligation (2.68 ± 0.53 fmol/ml). 6. It was concluded that a lower plasma level of endothelin and a reduced vascular responsiveness may contribute, at least in part, to the hyperdynamics of portal hypertension.


1989 ◽  
Vol 257 (1) ◽  
pp. G52-G57 ◽  
Author(s):  
J. G. Geraghty ◽  
W. J. Angerson ◽  
D. C. Carter

The relationship between portal venous pressure and the degree of portasystemic shunting was studied in portal vein-ligated and cirrhotic rats anesthetized with halothane. One day after partial portal vein ligation there was a strong positive correlation (r = 0.80, n = 7) between portal pressure and shunting of mesenteric venous blood as measured by injection of radioactive microspheres. The relationship subsequently underwent rapid change but stabilized by 14 days postligation, when higher levels of shunting were again associated with higher portal pressures up to a limit of approximately 70% shunting, above which pressures did not increase further. This relationship was well described by a quadratic function (r = 0.75, n = 17). In cirrhotic rats there was no relationship between portal pressure and shunting (r = -0.01, n = 10). The results suggest that in the prehepatic model there is little inherent variability in capacity to develop shunts, which open to a degree directly related to portal pressure, but that this relationship may be altered in cirrhotic portal hypertension.


Gut ◽  
1998 ◽  
Vol 42 (2) ◽  
pp. 276-282 ◽  
Author(s):  
X Li ◽  
I S Benjamin ◽  
B Alexander

Background—Portal hypertension is associated with gross haemodynamic disturbances characterised by high cardiac output, low peripheral vascular resistance, increased splanchnic blood flow, and portal systemic shunting.Aims—To study the relationship between intrahepatic portal systemic shunts and microsphere induced portal hypertension in the rat liver.Methods—Different sized microspheres were sequentially injected into the portal vein of male Wistar rats.Results—Steady state portal venous pressure was increased by 102.2 (35.6)% (14.9 (3.6) mm Hg) and 272.3 (78.0)% (24.0 (2.2) mm Hg) above the basal pressure following sequential injections of 15 and 80 μm diameter microspheres, respectively. Sequential injection of 15, 40, and 80 μm diameter microspheres in either ascending or descending order of size did not generate further increases in portal venous pressure. A single injection of 1.8 × 105 80 μm microspheres consistently produced a steady state portal venous pressure of 19.0 (1.3) mm Hg but did not approach the much higher value of 36.6 (43.2) mm Hg measured during clamping of the portal vein. These data indicate that the opening of patent intrahepatic shunts was responsible for the reduced pressures observed during microsphere injections and further evidence for this was provided by the location of microspheres in the pulmonary vascular bed. The elevation in portal venous pressure achieved by microsphere injections was not significantly different to that produced in rats subjected to partial portal vein ligation (20.7 (0.5) mm Hg, p>0.05). Wedged hepatic venous pressure decreased from 6.7 (0.7) to 3.0 (0.6) mm Hg following injection of 80 μm microspheres, suggesting a decrease in total hepatic blood flow. Conversely, injection of 15 μm microspheres induced an increase in wedged hepatic venous pressure from 7.0 (1.0) mm Hg to 12.4 (1.8) mm Hg, indicating a localised redistribution of blood flow at the presinusoidal level of the portal venous vascular network and increased intrahepatic shunt flow.Conclusion—It is suggested that there may be a protective pathophysiological role for these shunts when the liver is subjected to changes which induce acute portal hypertension.


2020 ◽  
Vol 15 (1) ◽  
pp. 981-987
Author(s):  
Hongjuan Yao ◽  
Yongliang Wang

AbstractCirrhosis caused by viral and alcoholic hepatitis is an essential cause of portal hypertension (PHT). The incidence of PHT complication is directly proportional to portal venous pressure (PVP), and the clinical research of PVP and its hemodynamic indexes is of great significance for deciding the treatment strategy of PHT. Various techniques are currently being developed to decrease portal pressure but hemodynamic side effects may occur. In this article, the hemodynamic indexes of cirrhotic PHT patients were studied to explore the correlation between the index and PVP and to evaluate the clinical value of Doppler ultrasound in measuring PVP in patients with PHT. This was achieved by selecting 90 cirrhotic PHT patients who underwent transjugular intrahepatic portosystemic shunt in our hospital from June 2015 to September 2019. Fifty healthy people who had a physical examination in the hospital in the same period were selected as the control group. The liver hemodynamic parameters of two groups were measured by Doppler ultrasound, and the cirrhotic PHT patients were graded by the Child–Pugh grading method to evaluate the liver function and measure the PVP value. The results showed that both the central portal vein velocity (PVV) and splenic vein velocity (SVV) of the PHT group were lower than those of the control group. Also, the portal vein diameter (PVD), portal venous flow and splenic vein diameter (SVD) were higher than those of the control group (all Ps < 0.05). Among liver function graded PHT patients, the PVD, PVV, SVD and SVV were significantly different (all Ps < 0.05). Furthermore, the PVP of patients with liver function grades A, B and C was 38.9 ± 1.4, 40.6 ± 5.1 and 42.5 ± 4.8 cmH2O, respectively, with a significant difference. It can be concluded from this study that Doppler ultrasound can be used as a tool for clinical assessment of PHT in cirrhosis patients. Doppler ultrasound showed a good prospect in noninvasive detection of PHT in cirrhosis; however, this technique needs application on large sample population study to validate the results.


HPB Surgery ◽  
1996 ◽  
Vol 10 (2) ◽  
pp. 113-116 ◽  
Author(s):  
Philip D. Feliciano ◽  
Joseph J. Cullen ◽  
John D. Corson

A case of a 70 year old man who was found to have an extrahepatic portal vein aneurysm during an evaluation for hematuria is reported. Extrahepatic portal vein aneurysms are rare with only twenty cases reported in the literature. Typically, patients present with hemorrhage requiring surgical exploration or the aneurysm is discovered during evaluation of another abdominal process. Management includes careful follow-up in the asymptomatic patient without underlying liver disease or portal hypertension.


2020 ◽  
Vol 1 (3) ◽  
pp. 149-169 ◽  
Author(s):  
Marvin Ryou ◽  
Nicholas Stylopoulos ◽  
Gyorgy Baffy

Nonalcoholic fatty liver disease (NAFLD) is a substantial and growing problem worldwide and has become the second most common indication for liver transplantation as it may progress to cirrhosis and develop complications from portal hypertension primarily caused by advanced fibrosis and erratic tissue remodeling. However, elevated portal venous pressure has also been detected in experimental models of fatty liver and in human NAFLD when fibrosis is far less advanced and cirrhosis is absent. Early increases in intrahepatic vascular resistance may contribute to the progression of liver disease. Specific pathophenotypes linked to the development of portal hypertension in NAFLD include hepatocellular lipid accumulation and ballooning injury, capillarization of liver sinusoidal endothelial cells, enhanced contractility of hepatic stellate cells, activation of Kupffer cells and pro-inflammatory pathways, adhesion and entrapment of recruited leukocytes, microthrombosis, angiogenesis and perisinusoidal fibrosis. These pathological events are amplified in NAFLD by concomitant visceral obesity, insulin resistance, type 2 diabetes and dysbiosis, promoting aberrant interactions with adipose tissue, skeletal muscle and gut microbiota. Measurement of the hepatic venous pressure gradient by retrograde insertion of a balloon-tipped central vein catheter is the current reference method for predicting outcomes of cirrhosis associated with clinically significant portal hypertension and guiding interventions. This invasive technique is rarely considered in the absence of cirrhosis where currently available clinical, imaging and laboratory correlates of portal hypertension may not reflect early changes in liver hemodynamics. Availability of less invasive but sufficiently sensitive methods for the assessment of portal venous pressure in NAFLD remains therefore an unmet need. Recent efforts to develop new biomarkers and endoscopy-based approaches such as endoscopic ultrasound-guided measurement of portal pressure gradient may help achieve this goal. In addition, cellular and molecular targets are being identified to guide emerging therapies in the prevention and management of portal hypertension.


2020 ◽  
pp. 27-41
Author(s):  
L. Zaklyakova ◽  
B. Levitan ◽  
M. Bolgova ◽  
V. Skvortsov ◽  
I. Zaklyakov

Portal vein thrombosis (PVT) is a form of venous thrombosis that causes impaired or terminated blood flow in the portal vein. PVT is the main reason for the development of extrahepatic portal hypertension. The article presents a clinical case of chronic PVT with signs of severe portal hypertension and ascites. A feature of the case is that in a patient with suspected decompensated cirrhosis of the liver with the ineffectiveness of standard treatment, PVT was detected. The cause of PVT was mechanical trauma of the portal vein and hemocoagulation thrombophilia. For health reasons, the patient was prescribed rivaroxaban. Rivaroxaban is an oral anticoagulant from the group of Xa inhibitors. Against the background of treatment, recanalization of PVT was noted in the patient. Our experiment has shown that rivaroxaban is a promising drug for treatment of PVT.


1995 ◽  
Vol 269 (6) ◽  
pp. H1922-H1930 ◽  
Author(s):  
R. Maass-Moreno ◽  
C. F. Rothe

The liver provides a reservoir available for mobilizing large amounts of blood, but if a change in downstream (outflow) pressure below a certain magnitude (break pressure) does not change upstream pressures, blood volume redistribution may be limited. For downstream pressures larger than the break pressure, the upstream pressures change proportionately. We tested the hypothesis that this nonlinear mode of pressure transmission could be found from the abdominal vena cava to the hepatic microcirculation and from the hepatic microcirculation to the portal vein. Using a servo-null micropipette technique, we measured microvascular pressures at the liver surface of rabbits. In 16 of 30 measurements, increasing the pressure at the liver outflow, by partially occluding the caudal thoracic vena cava, caused an increase in hepatic venular pressure only after the abdominal vena caval pressure exceeded a break pressure of 2.85 +/- 0.92 mmHg. In 13 of 31 measurements, portal venous pressure was not changed until the hepatic venular pressure exceeded a break pressure of 3.36 +/- 0.54 mmHg. Similar behavior and values were obtained for sinusoids and portal venules. When present, the sharp inflection in the upstream-downstream pressure plots suggests that this may be caused by a Starling resistor-type mechanism. When the break was absent, the downstream pressure may have been larger than the break pressure. We conclude that significant hepatic resistances with nonlinear characteristics exist upstream and downstream to the central venules, sinusoids, and portal venules.


Sign in / Sign up

Export Citation Format

Share Document