Models of Response Time to Peripheral Stimuli

1974 ◽  
Vol 18 (5) ◽  
pp. 533-533
Author(s):  
D.S. Kochhar ◽  
T.M. Fraser

The variable contribution of peripherally presented stimuli in a A sensory motor task has been explored in terms of stimulus and environmental variables. A simulated driving task was chosen as being a representative compensatory tracking task. Empirical models have been developed using response surface methodology, statistical design and data collected on a simulator with a 240° wrap-around screen and projection systems very much like cinerama. In this research, seven factors were isolated for a study of their effects on detection latency to peripherally presented stimuli when the subject was ‘driving’. These factors were stimulus size (circular stimuli between 18′ and 60′), stimulus color (red, white and green), stimulus-background contrast (background luminance 1ft.L and stimulus luminance of 30, 60 and 90 ft.L), stimulus location along the horizontal (between ± 90°) and vertical meridians (between ± 26°), intensity of continuous white noise (between 52 and 100 dbA), and complexity of the continuous central tracking task measured in terms of the simulated driving speed. Three levels of each variable were selected in a 7 factor Box-Behnken design. Twenty undergraduates between the ages 19 and 26 participated in the experiment. It was found that, in this multivariable environment when all seven factors were simultaneously varied, the effects of noise, stimulus location in the visual field and stimulus size were the more important determinants of response latency. In addition, marked differences for the left and right visual fields were observed for the right-handed subject population. Four models have been developed: two for the left visual field, with and without the continuous central task (CCT), and two for the right visual field for the same conditions. The response was found to be of the form 1/Yr = f (xi); i= 1,2,… 7 for both the left and right visual fields in the presence of the CCT. In the absence of the CCT the model was of the form Yr = f (xr) for the left and 1/2 = f (xi) for the right visual field where Yr = response time in millisec. and Yr xi = variables in equations. Response curves have been presented to illustrate the variation of response time with each of the seven variables for regions where response time may be expected to be a minimum. The implications of these curves and the models on which they are based have been examined from the design point of view.

1981 ◽  
Vol 53 (1) ◽  
pp. 311-316 ◽  
Author(s):  
Stephen M. Rao ◽  
Daniel Rourke ◽  
R. Douglas Whitman

Normal right-handed subjects were presented with luminance patterns varying sinusoidally in both space and time to the left and right visual fields. With no temporal variation in the stimuli, detection thresholds for the left visual field were lower than those for the right visual field for all spatial frequencies. However, with increasing temporal variations, a reversal in detection of threshold occurred, with the right visual field surpassing the left. This finding suggests that left and right visual processing may be differentially efficient for temporal and spatial visual information.


1996 ◽  
Vol 82 (1) ◽  
pp. 264-266 ◽  
Author(s):  
D. Erik Everhart ◽  
David W. Harrison ◽  
W. David Crews

Hemispheric asymmetry in 14 left- and 14 right-handed persons shown tachistoscopically presented emotional stimuli to left and right visual fields was examined using a forced-choice, reaction-time paradigm in which subjects were asked to identify positive and negative faces. Neutral faces were included within the two-alternative forced-choice paradigm. Reaction time and response-bias measures were recorded. Analysis indicated differential lateralization for left-handed and right-handed subjects with respect to neutral affective stimuli. While right-handed subjects' perceptions of neutral stimuli remained consistent across visual fields, left-handed ones identified neutral stimuli as more positive (happy) when presented to the left visual field and negative (angry) when presented to the right visual field. Implications for differential lateralization patterns among left- and right-handed adults are discussed.


1992 ◽  
Vol 44 (3) ◽  
pp. 529-555 ◽  
Author(s):  
T. A Mondor ◽  
M.P. Bryden

In the typical visual laterality experiment, words and letters are more rapidly and accurately identified in the right visual field than in the left. However, while such studies usually control fixation, the deployment of visual attention is rarely restricted. The present studies investigated the influence of visual attention on the visual field asymmetries normally observed in single-letter identification and lexical decision tasks. Attention was controlled using a peripheral cue that provided advance knowledge of the location of the forthcoming stimulus. The time period between the onset of the cue and the onset of the stimulus (Stimulus Onset Asynchrony—SOA) was varied, such that the time available for attention to focus upon the location was controlled. At short SO As a right visual field advantage for identifying single letters and for making lexical decisions was apparent. However, at longer SOAs letters and words presented in the two visual fields were identified equally well. It is concluded that visual field advantages arise from an interaction of attentional and structural factors and that the attentional component in visual field asymmetries must be controlled in order to approximate more closely a true assessment of the relative functional capabilities of the right and left cerebral hemispheres.


1987 ◽  
Vol 65 (3) ◽  
pp. 899-906 ◽  
Author(s):  
Edward J. Hass ◽  
Christopher W. Holden

It has been suggested that the hypnotic state results in a greater relative activation or priming of the right cerebral hemisphere than of the left hemisphere. The experiment reported here employed hypnosis to produce such a priming effect in a visual-detection task. Subjects were required to detect the presence or absence of a gap in outline squares presented either to the left visual field or right visual field, with response time as the primary dependent measure. Those subjects who were hypnotized produced a 50-msec. response time difference favoring squares presented to the left visual field whereas control subjects and simulator-control subjects showed no lateral asymmetries. The result is classified as a material-nonspecific priming effect and discussed with regard to the nature of processing resources.


1990 ◽  
Vol 64 (4) ◽  
pp. 1352-1360 ◽  
Author(s):  
M. R. Isley ◽  
D. C. Rogers-Ramachandran ◽  
P. G. Shinkman

1. The present experiments were designed to assess the effects of relatively large optically induced interocular torsional disparities on the developing kitten visual cortex. Kittens were reared with restricted visual experience. Three groups viewed a normal visual environment through goggles fitted with small prisms that introduced torsional disparities between the left and right eyes' visual fields, equal but opposite in the two eyes. Kittens in the +32 degrees goggle rearing condition experienced a 16 degrees counterclockwise rotation of the left visual field and a 16 degrees clockwise rotation of the right visual field; in the -32 degrees goggle condition the rotations were clockwise in the left eye and counterclockwise in the right. In the control (0 degree) goggle condition, the prisms did not rotate the visual fields. Three additional groups viewed high-contrast square-wave gratings through Polaroid filters arranged to provide a constant 32 degrees of interocular orientation disparity. 2. Recordings were made from neurons in visual cortex around the border of areas 17 and 18 in all kittens. Development of cortical ocular dominance columns was severely disrupted in all the experimental (rotated) rearing conditions. Most cells were classified in the extreme ocular dominance categories 1, 2, 6, and 7. Development of the system of orientation columns was also affected: among the relatively few cells with oriented receptive fields in both eyes, the distributions of interocular disparities in preferred stimulus orientation were centered near 0 degree but showed significantly larger variances than in the control condition.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 66 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Michael P. Rastatter ◽  
Catherine Loren

The current study investigated the capacity of the right hemisphere to process verbs using a paradigm proven reliable for predicting differential, minor hemisphere lexical analysis in the normal, intact brain. Vocal reaction times of normal subjects were measured to unilaterally presented verbs of high and of low frequency. A significant interaction was noted between the stimulus items and visual fields. Post hoc tests showed that vocal reaction times to verbs of high frequency were significantly faster following right visual-field presentations (right hemisphere). No significant differences in vocal reaction time occurred between the two visual fields for the verbs of low frequency. Also, significant differences were observed between the two types of verbs following left visual-field presentation but not the right. These results were interpreted to suggest that right-hemispheric analysis was restricted to the verbs of high frequency in the presence of a dominant left hemisphere.


1979 ◽  
Vol 31 (3) ◽  
pp. 423-439 ◽  
Author(s):  
John Jonides

Two letter classification experiments examine the hypothesis that lateral asymmetries in perceptual processing are sensitive to subtle changes in task demands. The first experiment reports a right visual field superiority for an easy letter classification, but a left field superiority for a difficult classification using the same population of stimuli. Experiment II demonstrates that the right field superiority can be reversed if the easy classification trials are embedded among more difficult trials. The implications of these results for theories of hemispheric localization are discussed.


1972 ◽  
Vol 31 (1) ◽  
pp. 227-230 ◽  
Author(s):  
Lester C. Shine ◽  
Joseph Wiant ◽  
Frank Da Polito

This experiment was designed to investigate the effect of learning on the free recall of letters presented tachistoscopically either to the left visual field, the right visual field, or identically and simultaneously to both visual fields. A modified Shine-Bower analysis of variance was used to analyze S's performance. The results indicate that initially, in accord with previous research, the right visual field is superior to the left visual field in performance, but that this superiority tends to reduce across trials and practically disappears in the later trials. Also, the right visual field condition is not appreciably better in performance than the condition with both visual fields.


1991 ◽  
Vol 73 (3) ◽  
pp. 1019-1024 ◽  
Author(s):  
Michael P. Rastatter ◽  
Richard A. McGuire

Here we report an experiment in which 16 right-handed young adults named a series of unilaterally presented pictures during concurrent unimanual finger tapping with the right and left hands at separate times. A multivariate analysis of variance showed no significant differences in picture-naming reaction time between left versus right visual-field stimulations. Also the test for finger tapping was nonsignificant, with the magnitude of disruption being symmetrical for the right and left hands as a function of visual fields. It was proposed that the two cerebral hemispheres interact with each other at later processing stages when performing tasks requiring both left and right hemispheric processing resources.


Perception ◽  
2021 ◽  
Vol 50 (1) ◽  
pp. 27-38
Author(s):  
Ella K. Moeck ◽  
Nicole A. Thomas ◽  
Melanie K. T. Takarangi

Attention is unequally distributed across the visual field. Due to greater right than left hemisphere activation for visuospatial attention, people attend slightly more to the left than the right side. As a result, people voluntarily remember visual stimuli better when it first appears in the left than the right visual field. But does this effect—termed a right hemisphere memory bias—also enhance involuntary memory? We manipulated the presentation location of 100 highly negative images (chosen to increase the likelihood that participants would experience any involuntary memories) in three conditions: predominantly leftward (right hemisphere bias), predominantly rightward (left hemisphere bias), or equally in both visual fields (bilateral). We measured subsequent involuntary memories immediately and for 3 days after encoding. Contrary to predictions, biased hemispheric processing did not affect short- or long-term involuntary memory frequency or duration. Future research should measure hemispheric differences at retrieval, rather than just encoding.


Sign in / Sign up

Export Citation Format

Share Document