On the Reproduction of Motion Parallax in Videocommunications

Author(s):  
Martin Böcker ◽  
Detlef Runde ◽  
Lothar Mühlbach

The paper addresses the question whether reproducing motion parallax increases the extent of telepresence in videocommunications. Motion parallax is defined as the change of the view due to the observer's movements. It was hypothesized that reproducing motion parallax (a) leads to more precise depth judgments by providing further depth cues, (b) allows ‘interactive viewing’, i.e. the observer can actively explore the visual scene by changing his/her position, and (c) compensates for stereoscopic “apparent movements”. In a Human Factors study, two videoconferencing set-ups providing motion parallax (one stereoscopic and one monoscopic version) were compared with two set-ups (monoscopic and stereoscopic) without motion parallax. Each set-up was used and rated by 32 subjects. The results supported the hypotheses only in part. Even though there was some evidence for more “spatial presence” and for a greater explorability of the scene through motion parallax, the compensation of apparent movements could not be achieved.

2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Laura Gonçalves Ribeiro ◽  
Olli J. Suominen ◽  
Ahmed Durmush ◽  
Sari Peltonen ◽  
Emilio Ruiz Morales ◽  
...  

Visual technologies have an indispensable role in safety-critical applications, where tasks must often be performed through teleoperation. Due to the lack of stereoscopic and motion parallax depth cues in conventional images, alignment tasks pose a significant challenge to remote operation. In this context, machine vision can provide mission-critical information to augment the operator’s perception. In this paper, we propose a retro-reflector marker-based teleoperation aid to be used in hostile remote handling environments. The system computes the remote manipulator’s position with respect to the target using a set of one or two low-resolution cameras attached to its wrist. We develop an end-to-end pipeline of calibration, marker detection, and pose estimation, and extensively study the performance of the overall system. The results demonstrate that we have successfully engineered a retro-reflective marker from materials that can withstand the extreme temperature and radiation levels of the environment. Furthermore, we demonstrate that the proposed maker-based approach provides robust and reliable estimates and significantly outperforms a previous stereo-matching-based approach, even with a single camera.


2021 ◽  
pp. 245592962199811
Author(s):  
Lei Wang

Water culture heritages in China are numerous and diverse with unbalanced regional distribution. Due to natural and human factors, some of the water culture heritages are disappearing gradually. In view of this situation, it is urgent for relevant government departments to strengthen supervision of these sites and increase investment, take measures to promote their effective protection, and encourage tourism authorities to develop China’s water culture heritage according to local conditions. It is imperative to set up protection, collection and research institutions that can sustain the national water culture heritage surveys which have been carried out over several years.


Author(s):  
Randall Spain ◽  
Benjamin Goldberg ◽  
Jeffrey Hansberger ◽  
Tami Griffith ◽  
Jeremy Flynn ◽  
...  

Recent advances in technology have made virtual environments, virtual reality, augmented reality, and simulations more affordable and accessible to researchers, companies, and the general public, which has led to many novel use cases and applications. A key objective of human factors research and practice is determining how these technology-rich applications can be designed and applied to improve human performance across a variety of contexts. This session will demonstrate some of the distinct and diverse uses of virtual environments and mixed reality environments in an alternative format. The session will begin with each demonstrator providing a brief overview of their virtual environment (VE) and a description of how it has been used to address a particular problem or research need. Following the description portion of the session, each VE will be set-up at a demonstration station in the room, and session attendees will be encouraged to directly interact with the virtual environment and ask demonstrators questions about their research and inquire about the effectiveness of using VE for research, training, and evaluation purposes. The overall objective of this alternative session is to increase the awareness of how human factors professionals use VE technologies and increase the awareness of the capabilities and limitations of VE in supporting the work of HF professionals.


2018 ◽  
Author(s):  
Reuben Rideaux ◽  
William J Harrison

ABSTRACTDiscerning objects from their surrounds (i.e., figure-ground segmentation) in a way that guides adaptive behaviours is a fundamental task of the brain. Neurophysiological work has revealed a class of cells in the macaque visual cortex that may be ideally suited to support this neural computation: border-ownership cells (Zhou, Friedman, & von der Heydt, 2000). These orientation-tuned cells appear to respond conditionally to the borders of objects. A behavioural correlate supporting the existence of these cells in humans was demonstrated using two-dimensional luminance defined objects (von der Heydt, Macuda, & Qiu, 2005). However, objects in our natural visual environments are often signalled by complex cues, such as motion and depth order. Thus, for border-ownership systems to effectively support figure-ground segmentation and object depth ordering, they must have access to information from multiple depth cues with strict depth order selectivity. Here we measure in humans (of both sexes) border-ownership-dependent tilt aftereffects after adapting to figures defined by either motion parallax or binocular disparity. We find that both depth cues produce a tilt aftereffect that is selective for figure-ground depth order. Further, we find the effects of adaptation are transferable between cues, suggesting that these systems may combine depth cues to reduce uncertainty (Bülthoff & Mallot, 1988). These results suggest that border-ownership mechanisms have strict depth order selectivity and access to multiple depth cues that are jointly encoded, providing compelling psychophysical support for their role in figure-ground segmentation in natural visual environments.SIGNIFICANCE STATEMENTSegmenting a visual object from its surrounds is a critical function that may be supported by “border-ownership” neural systems that conditionally respond to object borders. Psychophysical work indicates these systems are sensitive to objects defined by luminance contrast. To effectively support figure-ground segmentation, however, neural systems supporting border-ownership must have access to information from multiple depth cues and depth order selectivity. We measured border-ownership-dependent tilt aftereffects to figures defined by either motion parallax or binocular disparity and found aftereffects for both depth cues. These effects were transferable between cues, but selective for figure-ground depth order. Our results suggest that the neural systems supporting figure-ground segmentation have strict depth order selectivity and access to multiple depth cues that are jointly encoded.


2020 ◽  
Vol 15 (4) ◽  
pp. 261
Author(s):  
Filiberto Altobelli ◽  
Marco Napoli ◽  
Anna Benedetti ◽  
Ronald Vargas ◽  
Giuseppe Corti

According to European Landscape Convention, the term Landscape means an area whose character is the result of the action and interaction of natural and human factors. The equilibrium between these forces is mandatory to preserve this heritage implementing a good land protection and conservation policy that implies many professional figures like agronomists and soil scientists. Italian territory includes different physiographic regions in which many human activities, especially agriculture, differently operated through the time...


2004 ◽  
Vol 13 (5) ◽  
pp. 549-559 ◽  
Author(s):  
Roland Arsenault ◽  
Colin Ware

It is possible to simulate a high-quality virtual environment with viewpoint-controlled perspective, high-quality stereo, and a sense of touch obtained with the PHANToM force feedback device using existing “fish tank VR” technologies. This enables us to investigate the importance of different depth cues and touch using higher quality visual display than is possible with more immersive technologies. Prior work on depth perception suggests that different depth cues are important depending on the task performed. A number of studies have shown that motion parallax is more important than stereopsis in perceiving 3D patterns, but other studies suggest that stereopsis should be critically important for visually guided reaching. A Fitts' Law tapping task was used to investigate the relative importance of stereo and head tracking in visually guided hand movements. It allowed us to examine the intertap intervals following a head movement in order to look for evidence of rapid adaptation to a misplaced head position. The results show that stereo is considerably more important than eye-coupled perspective for this task, and that the benefits increase as task difficulty increases. Disabling stereo increased mean intertap intervals by 33%, while disabling head tracking produced only an 11% time increase. However, we failed to find the expected evidence for adaptation during the series of taps. We conclude by discussing the theoretical and practical implications of the results.


1996 ◽  
Vol 83 (3) ◽  
pp. 987-995 ◽  
Author(s):  
Mario F. Mendez ◽  
Monique M. Cherrier ◽  
Robert S. Meadows

Abnormal depth perception contributes to visuospatial deficits in Alzheimer's disease. Disturbances in stereopsis, motion parallax, and the interpretation of static monocular depth cues may result from neuropathology in the visual cortex. We evaluated 15 patients with mild Alzheimer's disease and 15 controls matched for age, sex, and education on measures of local stereopsis (stereoscopic testing), global stereopsis (random dots), motion parallax (Howard-Dolman apparatus), and monocular depth perception by relative size, interposition, and perspective. Compared to controls, the patients were significantly impaired in over-all depth perception. This impairment was largely due to disturbances in local stereopsis and in the interpretation of depth from perspective, independent of other visuospatial functions. Patients with Alzheimer's disease have disturbed interpretation of monocular as well as binocular depth cues. This information could lead to optic interventions to improve their visual depth perception.


Perception ◽  
1988 ◽  
Vol 17 (2) ◽  
pp. 255-266 ◽  
Author(s):  
Hiroshi Ono ◽  
Brian J Rogers ◽  
Masao Ohmi ◽  
Mika E Ono

Random-dot techniques were used to examine the interactions between the depth cues of dynamic occlusion and motion parallax in the perception of three-dimensional (3-D) structures, in two different situations: (a) when an observer moved laterally with respect to a rigid 3-D structure, and (b) when surfaces at different distances moved with respect to a stationary observer. In condition (a), the extent of accretion/deletion (dynamic occlusion) and the amount of relative motion (motion parallax) were both linked to the motion of the observer. When the two cues specified opposite, and therefore contradictory, depth orders, the perceived order in depth of the simulated surfaces was dependent on the magnitude of the depth separation. For small depth separations, motion parallax determined the perceived order, whereas for large separations it was determined by dynamic occlusion. In condition (b), where the motion parallax cues for depth order were inherently ambiguous, depth order was determined principally by the unambiguous occlusion information.


Sign in / Sign up

Export Citation Format

Share Document