Transcranial Direct Current Stimulation Over the Right Frontal Inferior Cortex Decreases Neural Activity Needed to Achieve Inhibition: A Double-Blind ERP Study in a Male Population

2016 ◽  
Vol 48 (3) ◽  
pp. 176-188 ◽  
Author(s):  
Salvatore Campanella ◽  
Elisa Schroder ◽  
Aurore Monnart ◽  
Marie-Anne Vanderhasselt ◽  
Romain Duprat ◽  
...  

Inhibitory control refers to the ability to inhibit an action once it has been initiated. Impaired inhibitory control plays a key role in triggering relapse in some pathological states, such as addictions. Therefore, a major challenge of current research is to establish new methods to strengthen inhibitory control in these “high-risk” populations. In this attempt, the right inferior frontal cortex (rIFC), a neural correlate crucial for inhibitory control, was modulated using transcranial direct current stimulation (tDCS). Healthy participants (n = 31) were presented with a “Go/No-go” task, a well-known paradigm to measure inhibitory control. During this task, an event-related potential (ERP) recording (T1; 32 channels) was performed. One subgroup (n = 15) was randomly assigned to a condition with tDCS (anodal electrode was placed on the rIFC and the cathodal on the neck); and the other group (n = 16) to a condition with sham (placebo) tDCS. After one 20- minute neuromodulation session, all participants were confronted again with the same ERP Go/No-go task (T2). To ensure that potential tDCS effects were specific to inhibition, ERPs to a face-detection task were also recorded at T1 and T2 in both subgroups. The rate of commission errors on the Go/No-go task was similar between T1 and T2 in both neuromodulation groups. However, the amplitude of the P3d component, indexing the inhibition function per se, was reduced at T2 as compared with T1. This effect was specific for participants in the tDCS (and not sham) condition for correctly inhibited trials. No difference in the P3 component was observable between both subgroups at T1 and T2 for the face detection task. Overall, the present data indicate that boosting the rIFC specifically enhances inhibitory skills by decreasing the neural activity needed to correctly inhibit a response.

Author(s):  
Vincent Cabibel ◽  
Makii Muthalib ◽  
Jérôme Froger ◽  
Stéphane Perrey

Repeated transcranial magnetic stimulation (rTMS) is a well-known clinical neuromodulation technique, but transcranial direct-current stimulation (tDCS) is rapidly growing interest for neurorehabilitation applications. Both methods (contralesional hemisphere inhibitory low-frequency: LF-rTMS or lesional hemisphere excitatory anodal: a-tDCS) have been employed to modify the interhemispheric imbalance following stroke. The aim of this pilot study was to compare aHD-tDCS (anodal high-definition tDCS) of the left M1 (2 mA, 20 min) and LF-rTMS of the right M1 (1 Hz, 20 min) to enhance excitability and reduce inhibition of the left primary motor cortex (M1) in five healthy subjects. Single-pulse TMS was used to elicit resting and active (low level muscle contraction, 5% of maximal electromyographic signal) motor-evoked potentials (MEPs) and cortical silent periods (CSPs) from the right and left extensor carpi radialis muscles at Baseline, immediately and 20 min (Post-Stim-20) after the end of each stimulation protocol. LF-rTMS or aHD-tDCS significantly increased right M1 resting and active MEP amplitude at Post-Stim-20 without any CSP modulation and with no difference between methods. In conclusion, this pilot study reported unexpected M1 excitability changes, which most likely stems from variability, which is a major concern in the field to consider.


2019 ◽  
Vol 39 (27) ◽  
pp. 5326-5335 ◽  
Author(s):  
Benjamin Meyer ◽  
Caroline Mann ◽  
Manuela Götz ◽  
Anna Gerlicher ◽  
Victor Saase ◽  
...  

2019 ◽  
Vol 9 (5) ◽  
pp. 121 ◽  
Author(s):  
Fengxue Qi ◽  
Michael A. Nitsche ◽  
Volker R. Zschorlich

The aim of this randomized sham-controlled study was to examine the impact of cathodal transcranial direct current stimulation (ctDCS) of the primary motor cortex (M1) during movement observation on subsequent execution-related motor cortex activity. Thirty healthy participants received sham or real ctDCS (1 mA) over the left M1 for 10 minutes, respectively. The participants observed a video showing repeated button pressing tasks of the right hand during the sham or real ctDCS, followed by performance of these tasks by the right hand. Motor-evoked potentials (MEP) were recorded from the resting right first dorsal interosseous muscle before movement observation during the sham or real ctDCS, immediately after observation of actions, and after subsequent movement execution. The results of the ANOVA showed a significant main effect on the group (F1,28 = 4.60, p = 0.041) and a significant interaction between time and the group (F2,56 = 5.34, p = 0.008). As revealed by respective post hoc tests, ctDCS induced a significant reduction of MEP amplitudes in connection with movement observation (p = 0.026, Cohen’s d = 0.861) and after subsequent movement execution (p = 0.018, Cohen’s d = 0.914) in comparison with the sham stimulation. It is concluded that ctDCS during movement observation was effective in terms of modulating motor cortex excitability. Moreover, it subsequently influenced execution-related motor cortex activity. This indicates a possible application for rehabilitative treatment in syndromes with pathologically enhanced cortical activity.


Appetite ◽  
2014 ◽  
Vol 83 ◽  
pp. 42-48 ◽  
Author(s):  
Olivia Morgan Lapenta ◽  
Karina Di Sierve ◽  
Elizeu Coutinho de Macedo ◽  
Felipe Fregni ◽  
Paulo Sérgio Boggio

Sign in / Sign up

Export Citation Format

Share Document