scholarly journals A finite memory structure filtering for indoor positioning in wireless sensor networks with measurement delay

2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668541 ◽  
Author(s):  
Pyung Soo Kim ◽  
Eung Hyuk Lee ◽  
Mun Seok Jang ◽  
Shin-Yoon Kang

In this article, an alternative indoor positioning mechanism is proposed considering finite memory structure filter as well as measurement delay. First, a finite memory structure filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least-squares criterion, which utilizes only finite measurements on the most recent window. The proposed finite memory structure filtering–based mechanism gives the filtered estimates for position, velocity, and acceleration of moving target in real time, while removing undesired noisy effects and preserving desired moving positions. Second, the proposed mechanism is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Third, through discussions about the choice of window length, it is shown that this can be considered as a useful design parameter to make the performance of the proposed mechanism as good as possible. Finally, computer simulations show that the performance of the proposed finite memory structure filtering–based mechanism can outperform the existing infinite memory structure filtering–based mechanism for the abruptly varying acceleration of moving target.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Pyung Soo Kim

This paper proposes an alternative finite memory structure (FMS) smoother with a recursive form under a least squares criterion using a forgetting factor strategy. The proposed FMS smoother does not require information of the noise covariances as well as the initial state. The proposed FMS smoother is shown to have good inherent properties such as time-invariance, unbiasedness, and deadbeat. The forgetting factor is shown to be considered as useful parameter to make the estimation performance of the proposed FMS smoother as good as possible. Through computer simulations for the F-404 engine system, it is shown that the proposed FMS smoother can be better than the existing FMS smoother for incorrect noise covariances and the IMS smoother for temporary uncertainties.


Sign in / Sign up

Export Citation Format

Share Document