A multi-factor integration-based semi-supervised learning for address resolution protocol attack detection in SDIIoT

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110599
Author(s):  
Zhong Li ◽  
Huimin Zhuang

Nowadays, in the industrial Internet of things, address resolution protocol attacks are still rampant. Recently, the idea of applying the software-defined networking paradigm to industrial Internet of things is proposed by many scholars since this paradigm has the advantages of flexible deployment of intelligent algorithms and global coordination capabilities. These advantages prompt us to propose a multi-factor integration-based semi-supervised learning address resolution protocol detection method deployed in software-defined networking, called MIS, to specially solve the problems of limited labeled training data and incomplete features extraction in the traditional address resolution protocol detection methods. In MIS method, we design a multi-factor integration-based feature extraction method and propose a semi-supervised learning framework with differential priority sampling. MIS considers the address resolution protocol attack features from different aspects to help the model make correct judgment. Meanwhile, the differential priority sampling enables the base learner in self-training to learn efficiently from the unlabeled samples with differences. We conduct experiments based on a real data set collected from a deepwater port and a simulated data set. The experiments show that MIS can achieve good performance in detecting address resolution protocol attacks with F1-measure, accuracy, and area under the curve of 97.28%, 99.41%, and 98.36% on average. Meanwhile, compared with fully supervised learning and other popular address resolution protocol detection methods, MIS also shows the best performance.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tianyi Zheng ◽  
Bao Peng ◽  
Guofu Zhou

Industrial Internet of Things is the core field of smart city. And intelligent detection is an important application field of industrial Internet of Things. Demand of the industrial is particularly urgent. In particular, the defect detection of mobile phone shells (MPS) has always been a common problem for famous mobile phone companies. A compression-free defect detection method (CFDDM) for MPS based on machine vision is proposed in this paper. Firstly, affine transformation is utilized to solve the angle deviation of MPS in different images. Then, edge detection, binarization, and open operation are combined to highlight the edge region based on the results of angle adjustment. It is convenient for region of interest (ROI) extraction and clipping. Finally, the method of gray histogram contrasting is utilized for defect detection according to the results of ROI clipping. And the detection results are obtained. In this paper, MPS data set is utilized for many tests. The results show that the proposed method can effectively detect whether there are defects in MPS data set without image compression. The recognition accuracy is 100%. The recognition time of a single image is about 4.56 s, which is better than other defect detection methods.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6585
Author(s):  
Claudio Urrea ◽  
David Benítez

The use of Software-Defined Networking (SDN) in the communications of the Industrial Internet of Things (IIoT) demands more comprehensive solutions than those developed to date. The lack of an SDN solution applicable in diverse IIoT scenarios is the problem addressed in this article. The main cause of this problem is the lack of integration of a set of aspects that should be considered in a comprehensive SDN solution. To contribute to the solution of this problem, a review of the literature is conducted in this article, identifying the main requirements for industrial networks nowadays as well as their solutions through SDN. This review indicates that aspects such as security, independence of the network technology used, and network centralized management can be tackled using SDN. All the advantages of this technology can be obtained through the implementation of the same solution, considering a set of aspects proposed by the authors for the implementation of SDNs in IIoT networks. Additionally, after analyzing the main features and advantages of several architectures proposed in the literature, an architecture with distributed network control is proposed for all SDN network scenarios in IIoT. This architecture can be adapted through the inclusion of other necessary elements in specific scenarios. The distributed network control feature is relevant here, as it prevents a single fault-point for an entire industrial network, in exchange for adding some complexity to the network. Finally, the first ideas for the selection of an SDN controller suitable for IIoT scenarios are included, as this is the core element in the proposed architecture. The initial proposal includes the identification of six controllers, which correspond to different types of control planes, and ten characteristics are defined for selecting the most suitable controller through the Analytic Hierarchy Process (AHP) method. The analysis and proposal of different fundamental aspects for the implementation of SDNs in IIoT in this article contribute to the development of a comprehensive solution that is not focused on the characteristics of a specific scenario and would, therefore, be applicable in limited situations.


2021 ◽  
Vol 13 (16) ◽  
pp. 8910
Author(s):  
Himanshi Babbar ◽  
Shalli Rani ◽  
Aman Singh ◽  
Mohammed Abd-Elnaby ◽  
Bong Jun Choi

The network session constraints for Industrial Internet of Things (IIoT) applications are different and challenging. These constraints necessitates a high level of reconfigurability, so that the system can assess the impact of an event and adjust the network effectively. Software Defined Networking (SDN) in contrast to existing networks segregates the control and data plane to support network configuration which is programmable with smart cities requirement that shows the highest impact on the system but faces the problem of reliability. To address this issue, the SDN-IIoT based load balancing algorithm is proposed in this article and it is not application specific.Quality of service (QoS) aware architecture i.e., SDN-IIoT load balancing scheme is proposed and it deals with load on the servers. Huge load on the servers, makes them vulnerable to halt the system and hence leads to faults which creates the reliability problem for real time applications. In this article, load is migrated from one server to another server, if load on one server is more than threshold value. Load distribution has made the proposed scheme more reliable than already existing schemes. Further, the topology used for the implementation has been designed using POX controller and the results has been evaluated using Mininet emulator with its support in python programming. Lastly, the performance is evaluated based on the various Quality of Service (QoS) metrics; data transmission, response time and CPU utilization which shows that the proposed algorithm has shown 10% improvement over the existing LBBSRT, Random, Round-robin, Heuristic algorithms.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


Sign in / Sign up

Export Citation Format

Share Document