scholarly journals 2D woven/ 3D orthogonal Woven Non-crimp E-glass Fabric as Reinforcement in Epoxy Composites using Vacuum Assisted Resin Infusion Molding

2017 ◽  
Vol 12 (2) ◽  
pp. 155892501701200 ◽  
Author(s):  
Suhas Yeshwant Nayak ◽  
Srinivas Shenoy Heckadka ◽  
Ramakrishna Vikas Sadanand ◽  
Kapil Bharadwaj ◽  
Harsh Mukut Pokharna ◽  
...  

E-glass/Epoxy composites were fabricated using Vacuum Assisted Resin Infusion Moulding (VARIM) in fiber weight fractions of 40%, 45%, 50% and 55 percent. E-glass fiber in the form of 2D plain woven fabric of 320 gsm and 3D orthogonal woven non-crimp fabric with 1830 gsm were considered for reinforcement. Mechanical properties including tensile strength, flexural strength, impact strength and inter-laminar shear strength (ILSS) of both the composites were evaluated and compared to explore the possibility of 3D fabric as an alternative over the plain weave fabric. Improvement in mechanical properties was seen with increase in fiber content in both the composites. Results support the view that 3D orthogonal weave fabric can be used in lieu of plain weave fabric as it exhibited improved mechanical properties. Morphological studies were used to analyze the fracture mechanisms.

2016 ◽  
Vol 368 ◽  
pp. 150-153
Author(s):  
Veronika Mušutová ◽  
Jan Mourek ◽  
Petr Tej

This paper is concerned with the analysis of geometric composites, whose reinforcement was made of plain weave fabric with different geometries. They were determined following the basic parameters of the textiles e.g. crimp length, crimp amplitude, thickness of the woven fabric, dimensions of the cross-sectional tow (tow width, tow height) and crimp angle. The number of fibers in the warp and tow strands and number of layers in the composites were also determined. These composites comprised of the same materials were subjected to a standard tensile test, according to DIN EN ISO 14 129. The mechanical properties of the composite as a whole were determined by tensile test.


2011 ◽  
Vol 175-176 ◽  
pp. 465-468 ◽  
Author(s):  
Lei Shi ◽  
Hua Wu Liu ◽  
Ping Xu ◽  
Dang Feng Zhao

Plain weave fabrics of polyacrylonitrile pre-oxidation yarns (PANOF) were prepared by small rapier loom. The flame retardation properties, mechanical properties and wear behaviors of PANOF plain weave fabrics were tested. The limiting oxygen index (LOI) of these PANOF plain weave fabric samples was 31%, which meets the criterion of flame-retardant fabrics. These fabrics neither melt nor shrunk when left in flame for a short period of time and the fabric structures were well maintained. Compared with flammable polyacrylonitrile fabrics, the polyacrylonitrile pre-oxidation fabrics exhibited excellent flame retardation properties, with satisfactory mechanical properties and comfortable handle.


2017 ◽  
Vol 51 (20) ◽  
pp. 2863-2878 ◽  
Author(s):  
MM Shokrieh ◽  
R Ghasemi ◽  
R Mosalmani

In the present research, a micromechanical-analytical model was developed to predict the elastic properties and strength of balanced plain weave fabric composites. In this way, a new homogenization method has been developed by using a laminate analogy method for the balanced plain weave fabric composites. The proposed homogenization method is a multi-scale homogenization procedure. This model divides the representative volume element to several sub-elements, in a way that the combination of the sub-elements can be considered as a laminated composite. To determine the mechanical properties of laminates, instead of using an iso-strain assumption, the assumptions of constant in-plane strains and constant out-of-plane stress have been considered. The applied assumptions improve the accuracy of prediction of mechanical properties of balanced plain weave fabrics composites, especially the out-of-plane elastic properties. Also, the stress analysis for prediction of strain–stress behavior and strength has been implemented in a similar manner. In addition, the nonlinear mechanical behavior of balanced plain weave composite is studied by considering the inelastic mechanical behavior of its polymeric matrix. To assess the accuracy of the present model, the results were compared with available results in the literature. The results, including of engineering constants (elastic modulus and Poisson’s ratio) and stress–strain behavior show the accuracy of the present model.


2015 ◽  
Vol 7 (38) ◽  
pp. 21455-21464 ◽  
Author(s):  
Xu Liu ◽  
Xinying Sun ◽  
Zhenyu Wang ◽  
Xi Shen ◽  
Ying Wu ◽  
...  

Author(s):  
Jiangbo Bai ◽  
Junjiang Xiong ◽  
Qiang Wang

This paper addresses a new micromechanical model to predict biaxial tensile moduli of plain weave fabric (PWF) composites by considering the interaction between the orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell (UC) were idealized as the curved beams with a path depicted by using sinusoidal shape functions. The biaxial tensile moduli of PWF composites were derived by means of the minimum total complementary potential energy principle founded on micromechanics. The biaxial tensile tests were respectively conducted on the RTM-made EW220/5284 PWF composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. The predictions from the new model were compared with experimental data and good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model. Using the new model, the biaxial tensile moduli of plain weave fabric (PWF) composites could be predicted based only on the properties of basic woven fabric.


2006 ◽  
Vol 306-308 ◽  
pp. 835-840 ◽  
Author(s):  
Osamu Kuwazuru ◽  
Nobuhiro Yoshikawa

The anisotropy of the tensile strength of plain-weave fabric is numerically evaluated by the finite element simulations. The plain-weave fabrics show complicated deformation behavior that is quite different from that of the continuum. The mechanics of woven fabric is not sophisticated yet enough to evaluate the strength and fracture mechanism in arbitrary stress conditions. The opacity of the tensile strength significantly diminishes the material reliability for the advanced use of fabrics. This study addresses the ideal tensile strength in arbitrary directions by using the pseudo-continuum model, which we have proposed to predict the deformation behavior and fiber stresses of the plain-weave fabrics. In this study, the numerical simulations of uniaxial extension in various directions are carried out by one finite element subjected to ideally uniform deformation, and we predict the breaking loads and elongations corresponding to the ultimate strength of the fiber.


Sign in / Sign up

Export Citation Format

Share Document