scholarly journals Nano-Curcumin Protects Against Sodium Nitrite–Induced Lung Hypoxia Through Modulation of Mitogen-Activated Protein Kinases/c-Jun NH2-Terminal Kinase Signaling Pathway

Dose-Response ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 155932582110331
Author(s):  
Ahlam Alhusaini ◽  
Sara Alhumaidan ◽  
Renad Almogren ◽  
Shaikha Alsaif ◽  
Ebtesam Alsultan ◽  
...  

Background and objective This study was designed to compare the efficacy of curcumin (CRN) with that of nano-curcumin (N-CRN) in the mitigation of various biochemical indices in hypoxic lung induced by sodium nitrite (SN) in rats. Methods Twenty-four adult male albino rats were divided into 4 groups. Group 1: control group received carboxy methyl cellulose; Group 2: hypoxic group injected with single dose of SN (60 mg/kg, s.c.); Group 3: SN-intoxicated rats pre-injected with CRN (100 mg/kg, i.p.); and Group 4: SN-intoxicated rats pre-injected with N-CRN (100 mg/kg, i.p.). Curcumin and N-CRN were administered intraperitoneally 2 hour prior to SN intoxication. Hemoglobin concentration, serum tumor necrosis factor-alpha (TNF-α), and caspase-3 were analyzed. Gene expression of hypoxia inducible factor-1 (HIF-1α), matrix metallo-proteinases (MMP)-2, and tissue inhibitors of metalloproteinases (TIMPs)-2, as well as the protein expression of mitogen-activated protein kinases (MAPKs) and c-Jun NH2-terminal kinase (JNK) were examined in lung tissues. Results Hemoglobin level was markedly reduced, and serum TNF-α and caspase-3 were significantly elevated post SN intoxication. The lung MMP-2 and HIF-1α mRNA were overexpressed in the hypoxic group; while TIMP-2 mRNA was downregulated. Sodium nitrite administration increased proteins’ expressions of MAPK and JNK. Pretreatment with CRN or N-CRN markedly mitigated those alterations. These results were supported by histopathological examinations of lung tissue. Conclusion Interestingly, N-CRN exhibited a pronounced protective effect via suppression of inflammatory and apoptotic biomarkers and modulation of MAPK/JNK signaling pathway.

Blood ◽  
2009 ◽  
Vol 113 (4) ◽  
pp. 893-901 ◽  
Author(s):  
Panagiotis Flevaris ◽  
Zhenyu Li ◽  
Guoying Zhang ◽  
Yi Zheng ◽  
Junling Liu ◽  
...  

Abstract Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document