MANTRA-PAF: Ablation Beats Antiarrhythmic Drugs for Reducing AF Burden at 5 Years

2015 ◽  
Vol 15 (28 Suppl) ◽  
pp. 8-9
Author(s):  
E. H. Nichols ◽  
J. C. Nielsen
Keyword(s):  
1982 ◽  
Vol 47 (02) ◽  
pp. 150-153 ◽  
Author(s):  
P Han ◽  
C Boatwright ◽  
N G Ardlie

SummaryVarious cardiovascular drugs such as nitrates and propranolol, used in the treatment of coronary artery disease have been shown to have an antiplatelet effect. We have studied the in vitro effects of two antiarrhythmic drugs, verapamil and disopyramide, and have shown their inhibitory effect on platelet function. Verapamil, a calcium channel blocker, inhibited the second phase of platelet aggregation induced by adenosine diphosphate (ADP) and inhibited aggregation induced by collagen. Disopyramide similarly inhibited the second phase of platelet aggregation caused by ADP and aggregation induced by collagen. Either drug in synergism with propranolol inhibited ADP or collagen-induced platelet aggregation. Disopyramide at high concentrations inhibited arachidonic add whereas verapamil was without effect. Verapamil, but not disopyramide, inhibited aggregation induced by the ionophore A23187.


2010 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Richard Schilling ◽  

Atrial fibrillation (AF) is linked to an increased risk of adverse cardiovascular events. While rhythm control with antiarrhythmic drugs (AADs) is a common strategy for managing patients with AF, catheter ablation may be a more efficacious and safer alternative to AADs for sinus rhythm control. Conventional catheter ablation has been associated with challenges during the arrhythmia mapping and ablation stages; however, the introduction of two remote catheter navigation systems (a robotic and a magnetic navigation system) may potentially overcome these challenges. Initial clinical experience with the robotic navigation system suggests that it offers similar procedural times, efficacy and safety to conventional manual ablation. Furthermore, it has been associated with reduced fluoroscopy exposure to the patient and the operator as well as a shorter fluoroscopy time compared with conventional catheter ablation. In the future, the remote navigation systems may become routinely used for complex catheter ablation procedures.


2011 ◽  
Vol 7 (2) ◽  
pp. 97 ◽  
Author(s):  
Niels Voigt ◽  
Dobromir Dobrev ◽  
◽  

Atrial fibrillation (AF) is the most common arrhythmia and is associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. Present drugs used for the therapy of AF (antiarrhythmics and anticoagulants) have major limitations, including incomplete efficacy, risks of life-threatening proarrhythmic events and bleeding complications. Non-pharmacological ablation procedures are efficient and apparently safe, but the very large size of the patient population allows ablation treatment of only a small number of patients. These limitations largely result from limited knowledge about the underlying mechanisms of AF and there is a hope that a better understanding of the molecular basis of AF may lead to the discovery of safer and more effective therapeutic targets. This article reviews the current knowledge about AF-related ion-channel remodelling and discusses how these alterations might affect the efficacy of antiarrhythmic drugs.


Sign in / Sign up

Export Citation Format

Share Document