scholarly journals Analysis on vibration for a high-frequency electro-hydraulic cleaning system controlled by improved two-dimensional rotary valve

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881141
Author(s):  
Xiancheng Ji ◽  
Yan Ren ◽  
Hesheng Tang

Conventional high-frequency cleaners utilize functional materials (e.g. piezoelectric ceramics, magnetostrictive materials) excited by electrical signals to realize high-frequency vibration, even ultrasonic vibration. However, it is difficult to produce a large force without sacrificing bandwidth because of the physical characteristics of materials themselves. Therefore, a high-frequency high-power cleaner driven by electro-hydraulic excitation is proposed. Only a few studies are performed on electro-hydraulic cleaners, owing to the limitation of frequency bandwidth of the electro-hydraulic system. Thus, a rotary valve named two-dimensional valve is improved and adopted to improve high-frequency performances of the electro-hydraulic cleaner. In this article, a two-dimensional rotary valve with a linear variable differential transformer is designed, and the vibration characteristics of the electro-hydraulic cleaner controlled by this valve are discussed in detail, especially vibration acceleration, vibration frequency, and pressure amplitude. A prototype of the electro-hydraulic cleaner is modeled and both a theoretical analysis and experimental investigation are carried out. Theoretical and experimental results indicate that the electro-hydraulic cleaning system outputs sinusoidal vibration waveforms, especially in a high-frequency domain, which could realize the vibration frequency of 2669 Hz. The measured waves at different frequencies (below the resonant frequency) demonstrate different distortions compared with the sinusoidal waveform. These distortions can be associated with the hydraulic resonance. At hydraulic resonance (1903 Hz), the amplitude is increased significantly and the vibration waveform becomes more pronounced. Nevertheless, the study does provide an access to the electro-hydraulic high-frequency vibration applied in cleaning or other engineering cases.

Author(s):  
He Wang ◽  
Chengwen Wang ◽  
Long Quan ◽  
Guofang Gong ◽  
Wenjing Li

The present study is focused on a novel method for the acquisition of high-frequency sinusoidal vibration waveform with electro-hydraulic vibration exciter. A rotary valve controlled electro-hydraulic vibration exciter is proposed to make it easier to obtain high vibration frequency than the conventional servo valve controlled counterpart. Three common used offices are taken into consideration: rectangular orifice, triangular orifice, and semicircular orifice. Analytical solution to orifice design of shape and axial length is suggested for the accurate control of vibration waveform. Harmonic theory borrowed from electronic technology is used as an evaluation index for the shape of vibration waveform. The orifice shape design decision is made according to the total harmonic distortion of vibration waveform. The nonlinear differential equation which models vibration waveform is established. The orifice axial length is designed according to the supply pressure, vibration frequency, and amplitude. Both theoretical and experimental results show that rectangular orifice is desirable for high-frequency sinusoidal vibration waveforms. With the orifice design solution, the proposed vibration exciter can output the vibration waveform with total harmonic distortion of less than 1% as compared with sinusoidal waveform and maximum error of 5% as compared with experimental value at vibration frequency of higher than 100 Hz, and greatly extend the frequency bandwidth when sinusoidal vibration waveform is required.


2020 ◽  
pp. 107754632096171
Author(s):  
He Wang ◽  
Zhen Chen ◽  
Jiahai Huang

In this article, a rotary valve is developed to obtain accurate high-frequency sinusoidal vibration waveforms. Then, a uniaxial electro-hydraulic shaking table controlled by a set of parallel rotary valves is constructed, which can superpose the sinusoidal vibration waveforms. The non-sinusoidal vibration waveforms including triangular vibration waveform, rectangular vibration waveform, sawtooth vibration waveform and trapezoidal vibration waveform are generated by adjusting the spool rotation speed based on the Fourier series. The results show that with one rotary valve, the uniaxial electro-hydraulic shaking table can output accurate high-frequency sinusoidal vibration waveforms and the total harmonic distortion is less than 1% at high vibration frequency. Compared with the standard vibration waveform, the error of the generated vibration waveform is very small. For the rectangular vibration waveform and sawtooth vibration waveform, the error is less than 6%, and for the triangular vibration waveform and trapezoidal vibration waveform, the error is less than 3%. The impacts of the working conditions on the error of the generated vibration waveform are very small. The proposed method for the accurate high-frequency non-sinusoidal vibration waveform is very effective and can be applied in high vibration frequency and different load masses. With the increase of the supply pressure, the amplitude of the generated vibration waveforms increases, while the error changes in a rather narrow range. The amplitude can be adjusted by changing the supply pressure with almost no effect on the accuracy of the vibration waveform.


Author(s):  
Yi Liu ◽  
Tao Wang ◽  
Guofang Gong ◽  
Rujun Gao

AbstractElectro-hydraulic vibration equipment (EHVE) is widely used in vibration environment simulation tests, such as vehicles, weapons, ships, aerospace, nuclear industries and seismic waves replication, etc., due to its large output power, displacement and thrust, as well as good workload adaptation and multi-controllable parameters. Based on the domestic and overseas development of high-frequency EHVE, dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment. The research status and progress of high-frequency electro-hydraulic vibration control technology (EHVCT) are discussed, from the perspective of vibration waveform control and vibration controller. The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control, stability control, offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out. Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method, a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion. The new method can realize independent adjustment and control of vibration waveform frequency, amplitude and offset under high-frequency vibration conditions, and provide a new idea for accurate simulation of high-frequency vibration waveform.


Author(s):  
He Wang ◽  
Guofang Gong ◽  
Hongbin Zhou ◽  
Wei Wang ◽  
Yi Liu

When sinusoidal vibration waveform is required, the frequency bandwidth of conventional electro-hydraulic vibration exciter controlled by servo valve is always limited to a rather narrow range due to the limits of slide valve structure and response speed, and no parameter is available for defining and evaluating the waveform quality. In this paper, a novel electro-hydraulic vibration exciter controlled by electromotor driven rotary valve is proposed to significantly extend the frequency range compared to the conventional servo valve controlled counterpart. Total harmonic distortion (THD) theory which is usually used to cope with voltage and current in electric system is borrowed to evaluate the quality of theoretical and experimental vibration waveforms at different supply pressures and vibration frequencies, quantitatively and qualitatively. The results show that the waveform quality is mainly influenced by the 3rd harmonic resonance. The proposed vibration exciter can output sinusoidal waveform with THD less than 5% at the vibration frequency higher than 70 Hz. In this frequency domain, the supply pressure has an extremely low impact on the THD of the waveform. The amplitude of the waveform can be adjusted by changing the supply pressure with almost no effect to the waveform quality at a certain vibration frequency.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2669
Author(s):  
Yinwei Li ◽  
Li Ding ◽  
Qibin Zheng ◽  
Yiming Zhu ◽  
Jialian Sheng

Compared with microwave synthetic aperture radar (SAR), terahertz SAR (THz-SAR) is easier to achieve ultrahigh-resolution image due to its higher frequency and shorter wavelength. However, higher carrier frequency makes THz-SAR image quality very sensitive to high-frequency vibration error of motion platform. Therefore, this paper proposes a novel high-frequency vibration error estimation and compensation algorithm for THz-SAR imaging based on local fractional Fourier transform (LFrFT). Firstly, the high-frequency vibration error of the motion platform is modeled as a simple harmonic motion and THz-SAR echo signal received in each range pixel can be considered as a sinusoidal frequency modulation (SFM) signal. A novel algorithm for the parameter estimation of the SFM signal based on LFrFT is proposed. The instantaneous chirp rate of the SFM signal is estimated by determining the matched order of LFrFT in a sliding small-time window and the vibration acceleration is obtained. Hence, the vibration frequency can be estimated by the spectrum analysis of estimated vibration acceleration. With the estimated vibration acceleration and vibration frequency, the SFM signal is reconstructed. Then, the corresponding THz-SAR imaging algorithm is proposed to estimate and compensate the phase error caused by the high-frequency vibration error of the motion platform and realize high-frequency vibration error estimation and compensation for THz-SAR imaging. Finally, the effectiveness of the novel algorithm proposed in this paper is demonstrated by simulation results.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Sign in / Sign up

Export Citation Format

Share Document