scholarly journals Direct tuning of gain-scheduled controller for electro-pneumatic clutch position control

2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110360
Author(s):  
Shuichi Yahagi ◽  
Itsuro Kajiwara

This study proposes a gain-scheduled controller with direct tuning for the position control of a pneumatic clutch actuator that is installed in heavy-duty trucks. Pneumatic clutch actuators are highly nonlinear systems and cannot be easily controlled. Industries require a simple controller design that is easy to understand and requires few trial-and-error calibrations. Therefore, we adopted a gain-scheduled proportional integral derivative (PID) control law, which is a well-known and easy-to-understand nonlinear control method. In this approach, a gain scheduler is expressed using polynomials composed of coefficient parameters and controlled object states. The unknown coefficient parameters of the polynomials are directly tuned from the controlled object input/output data without having to use a controlled object model. The proposed controller design procedure is simple and does not require system identification or trial-and-error tuning. The effectiveness of the proposed method is verified by an experiment using an actual vehicle. The experimental results confirm the effectiveness of the proposed method for the position control of pneumatic clutch actuators.

1988 ◽  
Vol 110 (2) ◽  
pp. 134-142 ◽  
Author(s):  
A. Nassirharand ◽  
J. H. Taylor ◽  
K. N. Reid

A new systematic and algebraic linear control system design procedure for use with highly nonlinear plants is developed. This procedure is based on simultaneous stabilization theory and sinusoidal-input describing function models of the nonlinear plant, and is presently applicable to single-input single-output, time-invariant, deterministic, stable, and continuous-time systems which are representable in standard state-variable differential equation form. Three software utilities to implement the controller design procedure are also outlined. This method and the associated software is applied to a position control problem of the sort encountered in robotics, and the results are compared with those previously obtained using both linear and nonlinear PID control.


1994 ◽  
Author(s):  
F. Ö. Onbaşioğlu ◽  
A. G. Parlos ◽  
K. L. Peddicord ◽  
John D. Metzger ◽  
Mohamed S. El-Genk ◽  
...  

2015 ◽  
Vol 66 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Vojtech Veselý ◽  
Adrian Ilka

Abstract A novel methodology is proposed for robust gain-scheduled PID controller design for uncertain LPV systems. The proposed design procedure is based on the parameter-dependent quadratic stability approach. A new uncertain LPV system model has been introduced in this paper. To access the performance quality the approach of a parameter varying guaranteed cost is used which allowed to reach for different working points desired performance. Numerical examples show the benefit of the proposed method.


2016 ◽  
Vol 26 (4) ◽  
pp. 791-802 ◽  
Author(s):  
Sándor Hajdu ◽  
Péter Gáspár

AbstractIn the frame structure of stacker cranes harmful mast vibrations may appear due to the inertial forces of acceleration or the braking movement phase. This effect may reduce the stability and positioning accuracy of these machines. Unfortunately, their dynamic properties also vary with the lifted load magnitude and position. The purpose of the paper is to present a controller design method which can handle the effect of a varying lifted load magnitude and position in a dynamic model and at the same time reveals good reference signal tracking and mast vibration reducing properties. A controller design case study is presented step by step from dynamic modeling through to the validation of the resulting controller. In the paper the dynamic modeling possibilities of single-mast stacker cranes are summarized. The handling of varying dynamical behavior is realized via the polytopic LPV modeling approach. Based on this modeling technique, a gain-scheduled controller design method is proposed, which is suitable for achieving the goals set. Finally, controller validation is presented by means of time domain simulations.


2013 ◽  
Vol 54 (3) ◽  
pp. 200-215 ◽  
Author(s):  
R. LI ◽  
Y. J. SHI ◽  
H. L. XU

AbstractThis paper presents an integrated guidance and control (IGC) design method for an unmanned aerial vehicle with static stability which is described by a nonlinear six-degree-of-freedom (6-DOF) model. The model is linearized by using small disturbance linearization. The dynamic characteristics of pitching mode, rolling mode and Dutch rolling mode are obtained by analysing the linearized model. Furthermore, an IGC design procedure is also proposed in conjunction with a proportional–integral–derivative (PID) control method and fuzzy control method. A PID controller is applied in the control loop of the elevator and aileron, and the attitude angle and attitude angular velocity are used as compensation feedback, giving a simple and low-order control law. A fuzzy control method is applied to perform the cross-coupling control of rolling and yawing. Finally, the 6-DOF simulation shows the effectiveness of the developed method.


Sign in / Sign up

Export Citation Format

Share Document