scholarly journals Experimental and simulation studies of motion control of a Delta robot using a model-based approach

2017 ◽  
Vol 14 (6) ◽  
pp. 172988141773873 ◽  
Author(s):  
Yong-Lin Kuo ◽  
Peng-Yu Huang
Author(s):  
Alireza Nemati ◽  
Manish Kumar

In this paper, a nonlinear control of a tilting rotor quadcopter is presented. The overall control architecture is divided into two sub-controllers. The first controller is based on the feedback linearization control derived from the dynamic model of the tilting quadcopter. This controls the pitch, roll, and yaw motions required for movement along an arbitrary trajectory in space. The second controller is based on two PD controllers which are used to control the tilting of the quadcopter independently along the pitch and the yaw directions respectively. The overall control enables the quadcopter to combine tilting and movement along a desired trajectory simultaneously. Simulation studies are presented based on the developed nonlinear dynamic model of the tilting rotor quadcopter to demonstrate the validity and effectiveness of the overall control system for an arbitrary trajectory tracking.


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880270 ◽  
Author(s):  
Yu Yao ◽  
Kai Cheng ◽  
Bangcheng Zhang ◽  
Jinhua Lin ◽  
Dawei Jiang ◽  
...  

With the advantage of steering performance, articulated tracked vehicles have excellent mobility in off-road application. However, in current models for steering performance, soil deformation on the interaction between track and soil cannot always be taken into account. Therefore, steering performance cannot always be calculated accurately. In order to solve the problem, it is essential to propose a steering model which can take the effect of soil deformation on track–soil interaction into consideration. In this article, a steering model of articulated tracked vehicle is proposed on track–soil interaction. Moreover, in order to improve steering performance, a track–soil sub-model is developed that can consider soil deformation on track–soil interaction. Using this steering model based on track–soil sub-model, steering performance can be calculated more accurately. Simulation studies and experimental results are in strong agreement with the theoretical results in this article. The results show that equipped with the track–soil sub-model, the proposed steering model can be used to accurately predict steering performance. The steering model of articulated tracked vehicle proposed in this article can provide a basis for other similar vehicles.


Sign in / Sign up

Export Citation Format

Share Document