scholarly journals Design of active disturbance rejection controller for compass-like biped walking

2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877684 ◽  
Author(s):  
Sumian Song ◽  
Chong Tang ◽  
Zidong Wang ◽  
Yinan Wang ◽  
Gangfeng Yan

This article proposes an active disturbance rejection controller design scheme to stabilize the unstable limit cycle of a compass-like biped robot. The idea of transverse coordinate transformation is applied to form the control system based on angular momentum. With the linearization approximation, the limit cycle stabilization problem is simplified into the stabilization of an linear time-invariant system, which is known as transverse coordinate control. In order to solve the problem of poor adaptability caused by linearization approximation, we design an active disturbance rejection controller in the form of a serial system. With the active disturbance rejection controller, the system error can be estimated by extended state observer and compensated by nonlinear state error feedback, and the unstable limit cycle can be stabilized. The numerical simulations show that the control law enhances the performance of transverse coordinate control.

Robotica ◽  
2014 ◽  
Vol 33 (3) ◽  
pp. 563-577 ◽  
Author(s):  
Gangfeng Yan ◽  
Chong Tang ◽  
Zhiyun Lin ◽  
Ivan Malloci

SUMMARYThis paper deals with the walking control problem of a compass-like biped robot with underactuated ankles in the framework of hybrid control systems. The compass-like biped robot is equipped with a constraint mechanism to lock the hip angle when the swing leg retracts. First, based on the Poincare return map, a limit cycle gait is obtained, and the stability of the gait is also checked. Then, a method based on transverse coordinate transformation is introduced to transform the problem of tracking a desired limit cycle into the stabilization problem of a linear time-invariant impulsive system. A feedback control design for stabilizing the walking gait is then presented. Finally, comparisons to several existing approaches for the similar model are provided to demonstrate the advantages of our proposed approach.


2012 ◽  
Vol 542-543 ◽  
pp. 223-227
Author(s):  
Chun Zhe Zhao ◽  
Rong Xu ◽  
Jiang Xiong ◽  
Xiao Ran Lin

The active disturbance rejection control (ADRC) design based on the sensitivity function is studied for the linear time-invariant SISO minimum-phase system with unknown order and uncertain relative degree. It is proved that ADRC can reject the disturbance and guarantee the close-loop stability provided that the relative degree of such plant is bounded.


2017 ◽  
Vol 40 (14) ◽  
pp. 4063-4077 ◽  
Author(s):  
Sumian Song ◽  
Chong Tang ◽  
Zidong Wang ◽  
Gangfeng Yan

This paper aims to develop an active disturbance rejection controller design scheme for compass-like biped robots. In the previous study, with a special designed mechanical structure on compass-like biped, we have generated a high-efficient walking gait. The original controller applied linearization approximation based on the method transverse coordinate control, with which the ability of disturbance rejection is insufficient. We introduce the active disturbance rejection controller method into the control scheme, which only requires the information of angular momentum and has the ability to compensate the model error and the external disturbance. With the new control strategy, the linearization approximation method is replaced by an active disturbance rejection controller and the robustness is improved. In order to further apply this control method, a switching control strategy has been proposed and a series of numerical simulations show that active disturbance rejection controller has a good disturbance rejection effect.


Author(s):  
Zhengrong Chu ◽  
Christine Wu ◽  
Nariman Sepehri

In this article, a new automated steering control method is presented for vehicle lane keeping. This method is a combination between the linear active disturbance rejection control and the quantitative feedback theory. The structure of the steering controller is first determined based on the linear active disturbance rejection control, then the controller is tuned in the framework of the quantitative feedback theory to meet the prescribed design specifications on sensitivity and closed-loop stability. The parameter uncertainties of the vehicle system are considered at the tuning stage. The proposed steering controller is simulated and tested on a scale vehicle. Both the simulation and experimental results demonstrate that the scale vehicle controlled by the proposed controller is able to perform the lane keeping. In the experiments, the lateral offset between the scale vehicle and the road centerline is regulated within the acceptable ranges of ±0.03 m during straight lane keeping and ±0.15 m during curved lane keeping. The proposed controller is easy to be implemented and is simple without requiring complex calculations and measurements of vehicle states. Simulations also show that the control method can be implemented on a full-scale vehicle.


2002 ◽  
Vol 8 (5) ◽  
pp. 659-671 ◽  
Author(s):  
Mosaad Mosleh ◽  
Amier Al-Ali

A linear time invariant (LTI) model of a marine diesel engine is presented. The effect of the discontinuity of the fuel injection into the cylinders and the injection period is considered. The proposed discrete model consists of a sampler and zero-order-hold mechanism, representing the fuel injection process. The design of the discrete controller is based on the pole assignment of the characteristic polynomial of the closed-loop transfer function with the goal of achieving zero steady-state error, and satisfying other design specifications. A numerical example illustrating the characteristic performance of a two stroke marine diesel engine is presented.


2003 ◽  
Vol 125 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Guang-Hong Yang ◽  
Jian Liang Wang

This paper is concerned with the nonfragile H∞ controller design problem for linear time-invariant systems. The controller to be designed is assumed to have norm-bounded uncertainties. Design methods are presented for dynamic output (measurement) feedback. The designed controllers with uncertainty (i.e. nonfragile controllers) are such that the closed-loop system is quadratically stable and has an H∞ disturbance attenuation bound. Furthermore, these robust controllers degenerate to the standard H∞ output feedback control designs, when the controller uncertainties are set to zero.


Sign in / Sign up

Export Citation Format

Share Document