scholarly journals Strategic inclusion of regions in multiregional clinical trials

2018 ◽  
Vol 16 (1) ◽  
pp. 98-105
Author(s):  
Seung Yeon Song ◽  
Deborah Chee ◽  
EunYoung Kim

Background With the recent publication of the International Conference on Harmonisation E17 guideline and major reforms in China underway, the platform for clinical trial conduct is expected to change. This study aims to assess the strategic inclusion of regions in clinical trials and its change in trends over the past decade. Methods The ClinicalTrials.gov registry was searched for clinical trials registered by the top 10 pharmaceutical companies between 1 January 2008 and 31 December 2017. Extracted data included phase, disease type, intervention, study start year, and region. Trial type was classified as either a local study or a multiregional clinical trial as per the International Conference on Harmonisation E17 guideline. Results Of 2488 phase I, 1855 phase II, and 1999 phase III trials included, the majority of phase I trials were local studies (76.8%), while the majority of phase II (66.0%) and phase III (72.2%) trials were multiregional clinical trials. The proportion of multiregional clinical trials showed an increasing trend for all phases ( p < 0.01). Although North America and Europe remained the main locations, increasing trends of inclusion of other regions, such as East Asia, were noted. Conclusion Globalization of drug development is evident with the increasing trend of multiregional clinical trial. Regulatory authorities as well as the pharmaceutical industry should prepare for the evolving setting of clinical research and problems that can arise from these changes.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 8040-8040
Author(s):  
Adam Falconi ◽  
Gilberto Lopes ◽  
Jayson L. Parker

8040 Background: We analyzed the risk of clinical trial failure duringnon-small cell lung cancer (NSCLC) drug development between 1998 and 2012. Methods: NSCLC drug development was investigated using trial disclosures from publically available resources. Compounds were excluded from the analysis if they began phase I clinical testing before 1998 and if they did not use treatment relevant endpoints. Analysis was conducted in regards to treatment indication, compound classification and mechanism of action. Costs of clinical drug development for advanced NSCLC were calculated using industry data and assumptions, a 9% yearly discount rate and assuming a clinical trial length of 2.5 years for phase I trials, 4 years for phase II trials, 5 years for phase III trials and an average of 5 phase I trials, 7 phase II trials, and 4 phase III trials per approved drug. All funding costs are in US dollars (USD). Results: 2,407 clinical trials met search criteria. 676 trials and 199 unique compounds met our inclusion criteria. The likelihood, or cumulative clinical trial success rate, that a new drug would pass all phases of clinical testing and be approved was found to be 11%, which is less than the expected industry aggregate rates (16.5%). The success of phase III trials was found to be the biggest obstacle for drug approval with a success rate of only 28%. Biomarker-guided targeted therapies (with a success rate of 62%) and receptor targeted therapies (with a success rate of 31%) were found to have the highest likelihood of success in clinical trials. The risk-adjusted cost for NSCLC clinical drug development was calculated to be 1.89 billion US dollars. Use of biomarkers decreased drug development cost by 26% to 1.4 billion US dollars. Potential savings may be even higher if fewer clinical trials are required for successful development. Conclusions: Physicians that enroll patients in NSCLC trials should prioritize their participation in clinical trial programs that involve either a biomarker or receptor targeted therapy, which appear to carry the best chances for a successful treatment response. Given the high adjusted cost of clinical testing alone in NSCLC, efforts to mitigate the risk of trial failure need to explore these factors more fully.


2015 ◽  
Vol 34 (1) ◽  
pp. 31
Author(s):  
Rahmatini Rahmatini

AbstrakUji klinik adalah suatu pengujian khasiat obat baru pada manusia, dimana sebelumnya diawali oleh pengujian pada binatang atau uji pra klinik. Pada dasarnya uji klinik memastikan efektivitas, keamanan dan gambaran efek samping yang sering timbul pada manusia akibat pemberian suatu obat. Bila uji klinik tidak dilakukan maka dapat terjadi malapetaka pada banyak orang bila langsung dipakai secara umum seperti pernah terjadi dengan talidomid (1959-1962) dan obat kontrasepsi pria (gosipol) di Cina. Setiap obat yang ditemukan melalui eksperimen in vitro atau hewan coba tidak terjamin bahwa khasiatnya benar-benar akan terlihat pada penderita. Pengujian pada manusia sendirilah yang dapat “menjamin” apakah hasil in vitro atau hewan sama dengan manusia.Uji klinik terdiri dari 4 fase, yaitu uji klinik fase I.Uji klinik fase II, uji klinik fase III dan uji klinik fase IV. Uji klinik fase I dilakukan pada manusia sehat, bertujuan untuk menentukan dosis tunggal yang dapat diterima, Uji klinik fase II, dilakukan pada 100-200 orang penderita untuk melihat apakah efek farmakologik yang tampak pada fase I berguna atau tidak untuk pengobatan. Uji klinik fase III dilakukan pada sekitar 500 penderita yang bertujuan untuk memastikan bahwa suatu obat baru benar-benar berkhasiat. Uji klinik fase IV merupakan pengamatan terhadap obat yang telah dipasarkan. Fase ini bertujuan menentukan pola penggunaan obat di masyarakat serta pola efektifitas dan keamanannya pada penggunaan yang sebenarnya.Uji klinik yang baik dilakukan dengan prosedur yang sudah digariskan dan komponen- komponennya disiapkan dengan matang sehingga hasilnya betul- betul dapat dimanfaatkan sebagai acuan pengobatan.Kata kunci : Khasiat- keamanan- uji klinikAbstractClinical trials is a new drug efficacy testing in humans, which previously preceded by testing on animals or pre-clinical testing. Basically, clinical trials confirm description of effectiveness, safety and side effects that often arise in humans because given of a drug. If clinical trials are not done then it can be evil in many people when directly used in general as once happened with thalidomide (1959-1962) and male contraceptive drugs (gossypol) in China. Any drug that is found through experiments in vitro or animal is not guaranteed that the propertiesTINJAUAN PUSTAKA32will actually be seen in patients. Tests on humans themselves who can "guarantee" if the results of in vitro or animal similar to humans.Clinical trial consisted of 4 phases, namely phase I clinical trial, phase II clinical trial, phase III clinical trials, and phase IV clinical trial. Phase I clinical trial, performed on healthy humans, aims to determine an acceptable single-dose, phase II clinical trial, performed on 100-200 patiens to see whether the pharmacologic effects seen in Phase I is useful or not for treatment. Phase III clinical trials conducted on about 500 patients which aims to ensure that a new drug is really efficacy. Phase IV clinical trial is an observation of the drug has been marketed. This phase aims to determine patterns of drug use in society and patterns of effectiveness and safety in actual use.Good clinical trials conducted with procedures that have been outlined and its components prepared and thus the results can actually be used as a reference treatment. Key words : Efficacy – Safety - Clinical trial


2006 ◽  
Vol 24 (1) ◽  
pp. 136-140 ◽  
Author(s):  
Andrew J. Vickers ◽  
Joyce Kuo ◽  
Barrie R. Cassileth

Purpose A substantial number of cancer patients turn to treatments other than those recommended by mainstream oncologists in an effort to sustain tumor remission or halt the spread of cancer. These unconventional approaches include botanicals, high-dose nutritional supplementation, off-label pharmaceuticals, and animal products. The objective of this study was to review systematically the methodologies applied in clinical trials of unconventional treatments specifically for cancer. Methods MEDLINE 1966 to 2005 was searched using approximately 200 different medical subject heading terms (eg, alternative medicine) and free text words (eg, laetrile). We sought prospective clinical trials of unconventional treatments in cancer patients, excluding studies with only symptom control or nonclinical (eg, immune) end points. Trial data were extracted by two reviewers using a standardized protocol. Results We identified 14,735 articles, of which 214, describing 198 different clinical trials, were included. Twenty trials were phase I, three were phase I and II, 70 were phase II, and 105 were phase III. Approximately half of the trials investigated fungal products, 20% investigated other botanicals, 10% investigated vitamins and supplements, and 10% investigated off-label pharmaceuticals. Only eight of the phase I trials were dose-finding trials, and a mere 20% of phase II trials reported a statistical design. Of the 27 different agents tested in phase III, only one agent had a prior dose-finding trial, and only for three agents was the definitive study initiated after the publication of phase II data. Conclusion Unconventional cancer treatments have not been subject to appropriate early-phase trial development. Future research on unconventional therapies should involve dose-finding and phase II studies to determine the suitability of definitive trials.


2007 ◽  
Vol 89 (3) ◽  
pp. 207-211 ◽  
Author(s):  
JF Thorpe ◽  
S Jain ◽  
TH Marczylo ◽  
AJ Gescher ◽  
WP Steward ◽  
...  

INTRODUCTION Prostate cancer is an excellent target for chemoprevention strategies; given its late age of onset, any delay in carcinogenesis would lead to a reduction in its incidence. This article reviews all the completed and on-going phase III trials in prostate cancer chemoprevention. PATIENTS AND METHODS All phase III trials of prostate cancer chemoprevention were identified within a Medline search using the keywords ‘clinical trial, prostate cancer, chemoprevention’. RESULTS In 2003, the Prostate Cancer Prevention Trial (PCPT) became the first phase III clinical trial of prostate cancer prevention. This landmark study was terminated early due to the 24.8% reduction of prostate cancer prevalence over a 7-year period in those men taking the 5α-reductase inhibitor, finasteride. This article reviews the PCPT and the interpretation of the excess high-grade prostate cancer (HGPC) cases in the finasteride group. The lack of relationship between cumulative dose and the HGPC cases, and the possible sampling error of biopsies due to gland volume reduction in the finasteride group refutes the suggestion that this is a genuine increase in HGPC cases. The other on-going phase III clinical trials of prostate cancer chemoprevention – the REDUCE study using dutasteride, and the SELECT study using vitamin E and selenium – are also reviewed. CONCLUSIONS At present, finasteride remains the only intervention shown in long-term prospective phase III clinical trials to reduce the incidence of prostate cancer. Until we have the results of trials using alternative agents including the on-going REDUCE and SELECT trials, the advice given to men interested in prostate cancer prevention must include discussion of the results of the PCPT. The increased rate of HGPC in the finasteride group continues to generate debate; however, finasteride may still be suitable for prostate cancer prevention, particularly in men with lower urinary tract symptoms.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Jiali Du ◽  
Jichun Gu ◽  
Ji Li

Abstract Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide, and the mortality of patients with PDAC has not significantly decreased over the last few decades. Novel strategies exhibiting promising effects in preclinical or phase I/II clinical trials are often situated in an embarrassing condition owing to the disappointing results in phase III trials. The efficacy of the current therapeutic regimens is consistently compromised by the mechanisms of drug resistance at different levels, distinctly more intractable than several other solid tumours. In this review, the main mechanisms of drug resistance clinicians and investigators are dealing with during the exploitation and exploration of the anti-tumour effects of drugs in PDAC treatment are summarized. Corresponding measures to overcome these limitations are also discussed.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 6576-6576
Author(s):  
T. L. Koeneke ◽  
J. O. Armitage ◽  
P. J. Bierman ◽  
R. Bociek ◽  
J. M. Vose ◽  
...  

6576 Background: Arguments have been made against early phase clinical trials (CTs) as possibly being unethical because its risk may outweigh its potential benefits. Whether this is true in the light of newer biological treatment for cancer is unknown. We therefore examined the association between the incidence of serious adverse events according to type and sponsorship of CTs in pts with lymphoma. Methods: All IRB approved CTs at the University of Nebraska Medical Center from Jan 2000-June 2005 classified as therapeutic for lymphoma involving a biological agent were included. CTs were classified in two ways: by type of CTs (phase I vs II vs III) and sponsorship (Investigator-initiated vs Industry-initiated. Multivariate logistic regression was used to evaluate the association between types/sponsorship of CTs with the incidence of IRB serious adverse events (SAE; no vs yes) and fatal adverse events (FAE; no vs yes) while adjusting for age, sex, race, lymphoma type and stage, interval from dx to tx, co-morbid conditions, and previous tx. Results: 357 pts with lymphoma enrolled in 29 CTs were included. The median age of pt was 54y (21–88). 41% of the pts had follicular lymphoma, 36% diffuse large cell, 14% mantle cell and 9% were other types. 59% had Stage IV lymphoma. 71% of the pts participated in investigator-initiated CTs, while 29% participated in industry-initiated CTs. 21% of pts were enrolled in phase I, 65% in phase II and 14% in phase III studies. SAEs were seen in 49 pts (14%), while FAEs occurred in 13 pts (4%). Multivariate analysis showed the risk of having SAE was independent of the type or sponsor of CTs. Additionally, the risk of FAEs was not associated with the type of CTs. However, the risk of having FAEs was less in investigator- iniatiated CTs than in industry-iniatiated trials (Odds Ratio: 0.13 (95% CI, 0.03–0.61, p = 0.01). Conclusions: Our study showed that in CTs involving biological treatments, the incidence of SAEs was not associated with the type or sponsor of CTs suggesting that use of biological agents in phase I studies may have similar risks to phase II/III trials. Further studies should be done in other types of malignancies to evaluate further the decrease frequency of FAEs seen in investigator-initiated trials. No significant financial relationships to disclose.


2021 ◽  
Author(s):  
Jincai Guo ◽  
Hui Xie ◽  
Hao Wu

Abstract Background: The purpose of this study is to analyze the registered clinical trials of COVID-19, and to provide a reference for the clinical treatment of COVID-19. Methods: Chinese ClinicalTrial Registry (ChiCTR) and Clinicaltrials.gov databases were searched for clinical trials of COVID-19, which were registered from inception to February 29, 2020, to screen out the clinical trials on the treatment of COVID-19, and the research units and regions, sample size, study types, study stages, and intervention measures were analyzed. Results: There were 226 clinical trials on COVID-19 in the 2 databases, and all of them were registered by research units in China. The top five registered areas were Hubei, Beijing, Shanghai, Guangdong, and Zhejiang. The study type was as follows: interventional study (207, 91.6%) and observational study (18, 8.0%). Clinical trial staging was as follows: exploratory studies/preliminary trials (91, 40.3%), phase I trials (4, 1.8%), phase II trials (12, 5.3%), phase III trials (12, 5.3%), phase IV trials (47, 20.8%), phase I/II trials (2, 0.9%), phase II/III trials (5, 2.2%), and other trials (57, 25.2%). Intervention measures were as follows: there were 143 (63.3%) trials of western medicine treatment, 50 (22.1%) trials of Chinese medicine treatment, and 21 (9.3%) trials of integrated Chinese medicine treatment and western medicine treatment. Conclusion: Researchers have registered a large number of clinical trials in a short time. The number of existing patients of COVID-19 is not enough to support hundreds of clinical trials. There is a lack of multicenter, randomized, double-blind, placebo-controlled trials.


2019 ◽  
Vol 20 (5) ◽  
pp. 522-539 ◽  
Author(s):  
Surovi Saikia ◽  
Manobjyoti Bordoloi ◽  
Rajeev Sarmah

The largest family of drug targets in clinical trials constitute of GPCRs (G-protein coupled receptors) which accounts for about 34% of FDA (Food and Drug Administration) approved drugs acting on 108 unique GPCRs. Factors such as readily identifiable conserved motif in structures, 127 orphan GPCRs despite various de-orphaning techniques, directed functional antibodies for validation as drug targets, etc. has widened their therapeutic windows. The availability of 44 crystal structures of unique receptors, unexplored non-olfactory GPCRs (encoded by 50% of the human genome) and 205 ligand receptor complexes now present a strong foundation for structure-based drug discovery and design. The growing impact of polypharmacology for complex diseases like schizophrenia, cancer etc. warrants the need for novel targets and considering the undiscriminating and selectivity of GPCRs, they can fulfill this purpose. Again, natural genetic variations within the human genome sometimes delude the therapeutic expectations of some drugs, resulting in medication response differences and ADRs (adverse drug reactions). Around ~30 billion US dollars are dumped annually for poor accounting of ADRs in the US alone. To curb such undesirable reactions, the knowledge of established and currently in clinical trials GPCRs families can offer huge understanding towards the drug designing prospects including “off-target” effects reducing economical resource and time. The druggability of GPCR protein families and critical roles played by them in complex diseases are explained. Class A, class B1, class C and class F are generally established family and GPCRs in phase I (19%), phase II(29%), phase III(52%) studies are also reviewed. From the phase I studies, frizzled receptors accounted for the highest in trial targets, neuropeptides in phase II and melanocortin in phase III studies. Also, the bioapplications for nanoparticles along with future prospects for both nanomedicine and GPCR drug industry are discussed. Further, the use of computational techniques and methods employed for different target validations are also reviewed along with their future potential for the GPCR based drug discovery.


2007 ◽  
Vol 25 (32) ◽  
pp. 5058-5062 ◽  
Author(s):  
Lynne I. Wagner ◽  
Lari Wenzel ◽  
Edward Shaw ◽  
David Cella

With increasing limits on the resources available to conduct cancer clinical trials, the inclusion of patient-reported outcomes (PROs) in treatment and symptom management trials must be prioritized. Although it has been suggested on occasion that phase III trials should take precedence over phase II trials, we argue that there is a clear and important role for PRO assessment in phase II trials going forward. To illustrate the value realized from including PROs in phase II trials, we provide case examples from cancer treatment and supportive care. The benefits of including PROs in symptom management intervention research are exemplified using phase II trials targeting cognitive impairment. The inclusion of PROs in phase II cancer clinical trials adds important information about the impact of treatment in health-related quality of life, and advances the science of PRO measurement. These contributions significantly enhance the design of phase III trials, ultimately leading to the efficient utilization of clinical trial resources.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 2520-2520
Author(s):  
P. Hertz ◽  
B. Seruga ◽  
L. W. Le ◽  
I. F. Tannock

2520 Background: Clinical trials are increasingly funded by industry. High costs of drug development may lead to attempts to develop new drugs in more ‘profitable’ (i.e., more prevalent) as compared to ‘less profitable’ (i.e., more deadly) cancers. Here we determine the focus of current global drug development. Methods: We determined characteristics of phase II and III clinical trials evaluating new drugs in oncology, which were registered with WHO International Clinical Trial Registries between 01/2008 and 06/2008. Estimates of incidence, mortality, and prevalence in the more- and less-developed world (MDW, LDW) were obtained from GLOBOCAN 2002. Simple correlation analysis was performed between the number of clinical trials and incidence, mortality and prevalence per cancer site after log transformation of variables. Results: We identified 399 newly registered trials. Of 374 trials with information about recruitment, 322 (86.1%) and 39 (10.4%) recruited patients only from the MDW and LDW, respectively, while 13 (3.5%) had worldwide recruitment. 229 (58%) of trials were sponsored by industry and 324 trials were phase II (81%). Most trials (and most phase III trials) evaluated treatments for globally prevalent cancers: breast, lung, prostate, and colorectal cancer (Table). Prevalence of a particular cancer type in both the MDW and LDW correlated significantly with the number of clinical trials (Pearson r = 0.63 and 0.55; p = 0.01 and 0.03, respectively). In contrast, mortality in the MDW (Pearson r = 0.73; p= 0.002), but not in the LDW (Pearson r = 0.38; p= 0.17), correlated significantly with the number of clinical trials. Conclusions: Global drug development in cancer predominates in globally prevalent cancers, which are a more important cause of mortality in the MDW than in the LDW. Cancer sites that are major killers globally, and especially in the LDW (e.g., stomach, liver, and esophageal cancer) should receive priority for clinical research. [Table: see text] No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document