EXPRESS: Cue Combination in Goal-Oriented Navigation

2021 ◽  
pp. 174702182110157
Author(s):  
Yafei Qi ◽  
Weimin Mou ◽  
Xuehui Lei

This study examined cue combination of self-motion and landmark cues in goal-localization. In an immersive virtual environment, before walking a two-leg path, participants learned the locations of three goal objects (one at the path origin, i.e., home) and landmarks. After walking the path without seeing landmarks or goals, participants indicated the locations of the home and non-home goals in four conditions: 1) path integration only, 2) landmarks only, 3) both path integration and the landmarks, and 4) path integration and rotated landmarks. The ratio of the length between the testing position (P) and the turning point (T) over the length between the T and the three goals (G) (i.e., PT/TG) was manipulated. The results showed the cue combination consistently for participants’ heading estimates but not for goal-localization. In Experiments 1-2 (using distal landmarks), the cue combination for goal estimates appeared in a small length ratio (PT/TG=0.5) but disappeared in a large length ratio (PT/TG=2). In Experiments 3-4 (using proximal landmarks), while the cue combination disappeared for the home with a medium length ratio (PT/TG=1), it appeared for the non-home goal with a large length ratio (PT/TG=2) and only disappeared with a very large length ratio (PT/TG=3). These findings are explained by a model stipulating that cue combination occurs in self-localization (e.g., heading estimates), which leads to one estimate of the goal location; proximal landmarks produce another goal location estimate; these two goal estimates are then combined, which may only occur for non-home goals.

2006 ◽  
Vol 16 (1-2) ◽  
pp. 23-28 ◽  
Author(s):  
W. Geoffrey Wright ◽  
Paul DiZio ◽  
James R. Lackner

We evaluated the influence of moving visual scenes and knowledge of spatial and physical context on visually induced self-motion perception in an immersive virtual environment. A sinusoidal, vertically oscillating visual stimulus induced perceptions of self-motion that matched changes in visual acceleration. Subjects reported peaks of perceived self-motion in synchrony with peaks of visual acceleration and opposite in direction to visual scene motion. Spatial context was manipulated by testing subjects in the environment that matched the room in the visual scene or by testing them in a separate chamber. Physical context was manipulated by testing the subject while seated in a stable, earth-fixed desk chair or in an apparatus capable of large linear motions, however, in both conditions no actual motion occurred. The compellingness of perceived self-motion was increased significantly when the spatial context matched the visual input and actual body displacement was possible, however, the latency and amplitude of perceived self-motion were unaffected by the spatial or physical context. We propose that two dissociable processes are involved in self-motion perception: one process, primarily driven by visual input, affects vection latency and path integration, the other process, receiving cognitive input, drives the compellingness of perceived self-motion.


2019 ◽  
Vol 19 (10) ◽  
pp. 236b
Author(s):  
Constanze Schmitt ◽  
Milosz Krala ◽  
Frank Bremmer

2018 ◽  
Vol 115 (7) ◽  
pp. E1637-E1646 ◽  
Author(s):  
Tale L. Bjerknes ◽  
Nenitha C. Dagslott ◽  
Edvard I. Moser ◽  
May-Britt Moser

Place cells in the hippocampus and grid cells in the medial entorhinal cortex rely on self-motion information and path integration for spatially confined firing. Place cells can be observed in young rats as soon as they leave their nest at around 2.5 wk of postnatal life. In contrast, the regularly spaced firing of grid cells develops only after weaning, during the fourth week. In the present study, we sought to determine whether place cells are able to integrate self-motion information before maturation of the grid-cell system. Place cells were recorded on a 200-cm linear track while preweaning, postweaning, and adult rats ran on successive trials from a start wall to a box at the end of a linear track. The position of the start wall was altered in the middle of the trial sequence. When recordings were made in complete darkness, place cells maintained fields at a fixed distance from the start wall regardless of the age of the animal. When lights were on, place fields were determined primarily by external landmarks, except at the very beginning of the track. This shift was observed in both young and adult animals. The results suggest that preweaning rats are able to calculate distances based on information from self-motion before the grid-cell system has matured to its full extent.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20130369 ◽  
Author(s):  
James J. Knierim ◽  
Joshua P. Neunuebel ◽  
Sachin S. Deshmukh

The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between ‘where’ versus ‘what’ needs revision. We propose a refinement of this model, which is more complex than the simple spatial–non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.


2011 ◽  
Vol 105 (6) ◽  
pp. 2989-3001 ◽  
Author(s):  
Ryan M. Yoder ◽  
Benjamin J. Clark ◽  
Joel E. Brown ◽  
Mignon V. Lamia ◽  
Stephane Valerio ◽  
...  

Successful navigation requires a constantly updated neural representation of directional heading, which is conveyed by head direction (HD) cells. The HD signal is predominantly controlled by visual landmarks, but when familiar landmarks are unavailable, self-motion cues are able to control the HD signal via path integration. Previous studies of the relationship between HD cell activity and path integration have been limited to two or more arenas located in the same room, a drawback for interpretation because the same visual cues may have been perceptible across arenas. To address this issue, we tested the relationship between HD cell activity and path integration by recording HD cells while rats navigated within a 14-unit T-maze and in a multiroom maze that consisted of unique arenas that were located in different rooms but connected by a passageway. In the 14-unit T-maze, the HD signal remained relatively stable between the start and goal boxes, with the preferred firing directions usually shifting <45° during maze traversal. In the multiroom maze in light, the preferred firing directions also remained relatively constant between rooms, but with greater variability than in the 14-unit maze. In darkness, HD cell preferred firing directions showed marginally more variability between rooms than in the lighted condition. Overall, the results indicate that self-motion cues are capable of maintaining the HD cell signal in the absence of familiar visual cues, although there are limits to its accuracy. In addition, visual information, even when unfamiliar, can increase the precision of directional perception.


2018 ◽  
Author(s):  
Matthias Stangl ◽  
Ingmar Kanitscheider ◽  
Martin Riemer ◽  
Ila Fiete ◽  
Thomas Wolbers

AbstractPath integration is a vital function in navigation: it enables the continuous tracking of one’s position in space by integrating self-motion cues. Path integration abilities vary across individuals but tend to deteriorate in old age. The specific causes of path integration errors, however, remain poorly characterized. Here, we combined tests of path integration performance with a novel analysis based on the Langevin diffusion equation, which allowed us to decompose errors into distinct causes that can corrupt path integration computations. Across age groups, the dominant errors were due to noise and a bias in speed estimation. Noise-driven errors accumulated with travel distance not elapsed time, suggesting that the dominant noise originates in the velocity input rather than within the integrator. Age-related declines were traced primarily to a growth in this unbiased noise. Together, these findings shed light on the contributors to path integration error and the mechanisms underlying age-related navigational deficits.


2020 ◽  
Vol 23 (6) ◽  
pp. 1161-1175
Author(s):  
Marie Dacke ◽  
Basil el Jundi ◽  
Yakir Gagnon ◽  
Ayse Yilmaz ◽  
Marcus Byrne ◽  
...  

AbstractUnusual amongst dung beetles, Scarabaeus galenus digs a burrow that it provisions by making repeated trips to a nearby dung pile. Even more remarkable is that these beetles return home moving backwards, with a pellet of dung between their hind legs. Here, we explore the strategy that S. galenus uses to find its way home. We find that, like many other insects, they use path integration to calculate the direction and distance to their home. If they fail to locate their burrow, the beetles initiate a distinct looping search behaviour that starts with a characteristic sharp turn, we have called a ‘turning point’. When homing beetles are passively displaced or transferred to an unfamiliar environment, they initiate a search at a point very close to the location of their fictive burrow—that is, a spot at the same relative distance and direction from the pick-up point as the original burrow. Unlike other insects, S. galenus do not appear to supplement estimates of the burrow location with landmark information. Thus, S. galenus represents a rare case of a consistently backward-homing animal that does not use landmarks to augment its path integration strategy.


2015 ◽  
Vol 113 (5) ◽  
pp. 1400-1413 ◽  
Author(s):  
Mario Prsa ◽  
Danilo Jimenez-Rezende ◽  
Olaf Blanke

The monitoring of one's own spatial orientation depends on the ability to estimate successive self-motion cues accurately. This process has become to be known as path integration. A feature of sequential cue estimation, in general, is that the history of previously experienced stimuli, or priors, biases perception. Here, we investigate how during angular path integration, the prior imparted by the displacement path dynamics affects the translation of vestibular sensations into perceptual estimates. Subjects received successive whole-body yaw rotations and were instructed to report their position within a virtual scene after each rotation. The overall movement trajectory either followed a parabolic path or was devoid of explicit dynamics. In the latter case, estimates were biased toward the average stimulus prior and were well captured by an optimal Bayesian estimator model fit to the data. However, the use of parabolic paths reduced perceptual uncertainty, and a decrease of the average size of bias and thus the weight of the average stimulus prior were observed over time. The produced estimates were, in fact, better accounted for by a model where a prediction of rotation magnitude is inferred from the underlying path dynamics on each trial. Therefore, when passively displaced, we seem to be able to build, over time, from sequential vestibular measurements an internal model of the vehicle's movement dynamics. Our findings suggest that in ecological conditions, vestibular afference can be internally predicted, even when self-motion is not actively generated by the observer, thereby augmenting both the accuracy and precision of displacement perception.


2019 ◽  
Author(s):  
Dmitri Laptev ◽  
Neil Burgess

AbstractPlace cells and grid cells in the hippocampal formation are thought to integrate sensory and self-motion information into a representation of estimated spatial location, but the precise mechanism is unknown. We simulated a parallel attractor system in which place cells form an attractor network driven by environmental inputs and grid cells form an attractor network performing path integration driven by self-motion, with inter-connections between them allowing both types of input to influence firing in both ensembles. We show that such a system is needed to explain the spatial patterns and temporal dynamics of place cell firing when rats run on a linear track in which the familiar correspondence between environmental and self-motion inputs is changed (Gothard et al., 1996b; Redish et al., 2000). In contrast, the alternative architecture of a single recurrent network of place cells (performing path integration and receiving environmental inputs) cannot reproduce the place cell firing dynamics. These results support the hypothesis that grid and place cells provide two different but complementary attractor representations (based on self-motion and environmental sensory inputs respectively). Our results also indicate the specific neural mechanism and main predictors of hippocampal map realignment and make predictions for future studies.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Bingyu Liu ◽  
Qingyang Tian ◽  
Yong Gu

Self-motion signals, distributed ubiquitously across parietal-temporal lobes, propagate to limbic hippocampal system for vector-based navigation via hubs including posterior cingulate cortex (PCC) and retrosplenial cortex (RSC). Although numerous studies have indicated posterior cingulate areas are involved in spatial tasks, it is unclear how their neurons represent self-motion signals. Providing translation and rotation stimuli to macaques on a 6-degree-of-freedom motion platform, we discovered robust vestibular responses in PCC. A combined three-dimensional spatiotemporal model captured data well and revealed multiple temporal components including velocity, acceleration, jerk, and position. Compared to PCC, RSC contained moderate vestibular temporal modulations and lacked significant spatial tuning. Visual self-motion signals were much weaker in both regions compared to the vestibular signals. We conclude that macaque posterior cingulate region carries vestibular-dominant self-motion signals with plentiful temporal components that could be useful for path integration.


Sign in / Sign up

Export Citation Format

Share Document