scholarly journals 1,2,3-triazole-dithiocarbamate-naphthalimides: Synthesis, characterization, and biological evaluation

2020 ◽  
pp. 174751982096697
Author(s):  
Qiu Mei Chen ◽  
Zhen Li ◽  
Guang Xun Tian ◽  
Yi Chen ◽  
Xiang Hua Wu

Fifteen novel dithiocarbamate-derived naphthalimides as a type of potential anticancer and antimicrobial agents were synthesized and characterized by spectral and analytical techniques. The structures of 2b, 5a, and 7b were established by X-ray crystallography. Their in vitro antitumor activities were evaluated by the MTT method against MDA-MB-231, HepG-2, PC12, as well as A549. Based on the results of the MTT assay, compound 7c bearing a morpholinyl substituent displayed the highest activity and selectivity toward HepG-2 cancer cells with an IC50 of 10.86 µM. All new compounds were screened for their antimicrobial activity against Candida albicans, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The preliminary results showed that compound 7d (an N-methyl piperazine) showed high efficacy against B. subtilis with a minimum inhibitory concentration value of 7.6 µM, which was superior to that of the clinical drug, Cefuroxim. It is found that the anticancer and antibacterial activities of the dithiocarbamate-naphthalimide derivatives were significantly enhanced when bearing a 1,2,3-triazole group.

2022 ◽  
Vol 8 ◽  
Author(s):  
Entesar A. Hassan ◽  
Ihsan A. Shehadi ◽  
Awatef M. Elmaghraby ◽  
Hadir M. Mostafa ◽  
Salem E. Zayed ◽  
...  

In the present study, a general approach for the synthesis of 1-(1H-indol-3-yl)-3,3-dimercaptoprop-2-en-1-one (1) and 5-(1H-indol-3-yl)-3H-1,2-dithiole-3-thione (2) was performed. They are currently used as efficient precursors for the synthesis of some new compounds bearing five- and/or six-membered heterocyclic moieties, e.g., chromenol (3, 4), 3,4-dihydroquinoline (7, 8) and thiopyran (10, 12)-based indole core. In addition, molecular docking studies were achieved, which showed that all the newly synthesized compounds are interacting with the active site region of the target enzymes, the targets UDP-N-acetylmuramatel-alanine ligase (MurC), and human lanosterol14α-demethylase, through hydrogen bonds and pi-stacked interactions. Among these docked ligand molecules, the compound (9) was found to have the minimum binding energy (−11.5 and −8.5 Kcal/mol) as compared to the standard drug ampicillin (−8.0 and −8.1 Kcal/mol) against the target enzymes UDP-N-acetylmuramatel-alanine ligase (MurC), and Human lanosterol14α-demethylase, respectively. Subsequently, all new synthesized analogues were screened for their antibacterial activities against Gram-positive (Bacillus subtilis), and Gram-negative bacteria (Escherichia coli), as well as for antifungal activities against Candida albicans and Aspergillus flavus. The obtained data suggest that the compounds exhibited good to excellent activity against bacterial and fungi strains. The compound (E)-2-(6-(1H-indole-3-carbonyl)-5-thioxotetrahydrothieno [3,2-b]furan-2(3H)-ylidene)-3-(1H-indol-3-yl)-3-oxopropanedithioic acid (9) showed a high binding affinity as well as an excellent biological activity. Therefore, it could serve as the lead for further optimization and to arrive at potential antimicrobial agent.


Author(s):  
Zohor Mohammad Mahdi Alzhrani ◽  
Mohammad Mahboob Alam ◽  
Syed Nazreen

Background: The frequent uses of antimicrobial agents to treat infections in diabetic patients make them more drug resistance than non diabetic patients which accounts for higher mortality rate of diabetic patients. Therefore, it is a necessity today to synthesize new drugs with dual mode of action as antidiabetic and antibacterial agents. In the present work, new derivatives containing thiazolidinedione and 1,3,4-oxadiaozle have been synthesized and screened for PPAR-γ and antibacterial activities. Methods: Compound 5-12 have been synthesized from 2-methoxy benzaldehyde and thiazolidinedione and characterized using different spectroscopic techniques such as IR, NMR and mass spectrometry. These compounds were tested for in vitro PPAR-γ transactivation, PPAR-γ gene expression and antibacterial activities. Finally molecular docking was carried out to see the binding interactions of molecules with the target protein. Results: All the compounds follow Lipinski rule suggesting the synthesized derivatives have good drug likeness properties. Compound 11 and 12 exhibited promising PPAR-γ transactivation with 73.69% and 76.50%, respectively as well as showed significant antibacterial activity with comparable MIC of 3.12 μg/disc to standard drug amoxicillin. The docking result was found to be in consistent with the in vitro PPAR-γ transactivation results. Conclusion: Compounds 11 and 12 can be further investigated as lead molecules for the development of new and effective antidiabetic and antibacterial agents.


2013 ◽  
Vol 78 (9) ◽  
pp. 1301-1308 ◽  
Author(s):  
Lin Luo ◽  
Jiang-Ke Qin ◽  
Zhi-Kai Dai ◽  
Shi-Hua Gao

Nine novel aminoalkoxy substituted benzoxanthones (3a-3i) were synthesized. Their antitumor activities were evaluated in five human solid tumor cell lines including Hep-G2, BEL-7402, HeLa, MGC-803 and CNE by MTT method. The results showed that most of the compounds displayed moderate to good inhibitory activities on the tested cancer cell lines in vitro, among them compounds 3a and 3h showed higher antitumor activity than other tested compounds against most cell lines. The influence of two kinds of structural factors including the terminal amino group and length of carbon spacers on the anticancer activities were explored to discuss the preliminary structure-activity relationships.


2013 ◽  
Vol 634-638 ◽  
pp. 922-925
Author(s):  
Zhao Yang ◽  
Zhi Xiang Wang ◽  
Zheng Fang ◽  
Kai Guo

Sixteen 3-arylurea-5-fluoroindolin-2-one derivatives were designed according to the principle of fragment based drug discovery and synthesized with 5-fluoroisatin as the starting material. The obtained structures were identified by 1H NMR, MS and elemental analysis. In vitro evaluation of antitumor bioactivity was performed by MTT method. Most of synthesized compounds showed antitumor activities, especially, activities of 6a, 6h, and 6j in tumor inhibition were better than others.


2013 ◽  
Vol 634-638 ◽  
pp. 926-929
Author(s):  
Bao Hua Zou ◽  
Zheng Fang ◽  
Zhao Yang ◽  
Kai Guo

Nine 5-fluoroindolin-2-one derivatives with urea linkage were designed and synthesized. The obtained structures were identified by 1H NMR, MS and elemental analysis. In vitro evaluation of antitumor bioactivity was performed by MTT method. Most of synthesized compounds showed antitumor activities, especially, compounds 6e and 6f, which were better than or equal to the antitumor activity of positive control.


2021 ◽  
Author(s):  
Gül Özdemir ◽  
Namık Kılınç ◽  
Sevda Manap ◽  
Murat Beytur ◽  
Muzaffer Alkan ◽  
...  

A series of 2-ethoxy-4-{[3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (3) were synthesized from the reactions of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (1) with 2-ethoxy-4-formyl-phenyl benzenesulfonate (2). N-acetyl derivatives (4) of compounds 3 were also obtained. Then, the compounds 3 have been treated with morpholine and 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize 2-ethoxy-4-{[1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (5) and 2-ethoxy-4-{[1-(2,6-dimethylmorpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (6), respectively. The structures of twenty-six new compounds were identified by using elemental analysis, IR, 1H NMR, 13C NMR, and MS spectral data. In addition, in vitro antibacterial activities of the new compounds were evaluated against six bacteria such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus cereus and Klepsiella pneumonia according to agar well diffusion method. Furthermore, in order to determine the possible antidiabetic properties of the synthesized 1,2,4-triazole derivatives, inhibition effects on the AR enzyme were investigated and molecular docking studies were carried out to determine the receptor-ligand interactions of these compounds. IC50 values of triazole-derived compounds (6a, 6b, 6d-g) against AR enzyme were determined as 0.95 µM, 0.75 µM, 1.83 µM, 0.62 µM, 1.05 µM, 1.06 µM, respectively. Considering the docking scores and binding energies obtained docking studies, it has been shown that molecules fit very well to the active site of the AR enzyme.


2013 ◽  
Vol 749 ◽  
pp. 350-353 ◽  
Author(s):  
Ke Tao Chen ◽  
Zheng Fang ◽  
Zhao Yang ◽  
Kai Guo

In order to improve aqueous solubility of Sunitinib, based on the structure-activity relationship, four analogues were designed and synthesized. The obtained structures were identified by1H NMR, MS and elemental analysis.In vitroevaluation of antitumor bioactivity was performed by MTT method. All of synthesized compounds showed antitumor activities, especially, compounds A1, which were better than or equal to the antitumor activity of positive control.


2012 ◽  
Vol 22 (2) ◽  
pp. 1031-1035 ◽  
Author(s):  
Vasudeva Rao Avupati ◽  
Rajendra Prasad Yejella ◽  
Girijasankar Guntuku ◽  
Pradeepsagar Gunta

2020 ◽  
Vol 13 (12) ◽  
pp. 469
Author(s):  
Sergey N. Lavrenov ◽  
Elena B. Isakova ◽  
Alexey A. Panov ◽  
Alexander Y. Simonov ◽  
Viktor V. Tatarskiy ◽  
...  

The wide spread of pathogens resistance requires the development of new antimicrobial agents capable of overcoming drug resistance. The main objective of the study is to elucidate the effect of substitutions in tris(1H-indol-3-yl)methylium derivatives on their antibacterial activity and toxicity to human cells. A series of new compounds were synthesized and tested. Their antibacterial activity in vitro was performed on 12 bacterial strains, including drug resistant strains, that were clinical isolates or collection strains. The cytotoxic effect of the compounds was determined using an test with HPF-hTERT (human postnatal fibroblasts, immortalized with hTERT) cells. The activity of the obtained compounds depended on the carbon chain length. Derivatives with C5–C6 chains were more active. The minimum inhibitory concentration (MIC) of the most active compound on Gram-positive bacteria, including MRSA, was 0.5 μg/mL. Compounds with C5–C6 chains also revealed high activity against Staphylococcus epidermidis (1.0 and 0.5 μg/mL, respectively) and moderate activity against Gram-negative bacteria Escherichia coli (8 μg/mL) and Klebsiella pneumonia (2 and 8 μg/mL, respectively). However, they have no activity against Salmonella cholerasuis and Pseudomonas aeruginosa. The most active compounds revealed higher antibacterial activity on MRSA than the reference drug levofloxacin, and their ratio between antibacterial and cytotoxic activity exceeded 10 times. The data obtained provide a basis for further study of this promising group of substances.


Sign in / Sign up

Export Citation Format

Share Document