Numerical Computation of Laminar Separation and Reattachment of Flow Over Surface Mounted Ribs

1991 ◽  
Vol 113 (2) ◽  
pp. 190-198 ◽  
Author(s):  
Ying-Jong Hong ◽  
Shou-Shing Hsieh ◽  
Huei-Jan Shih

Numerical results are presented concerning the fluid characteristics of steady-state laminar flow over surface mounted ribs. Computations are carried out using a false transient stream function-vorticity form. The effects of the aspect ratios (width-to-depth) of the ribs and Reynolds numbers as well as initial boundary-layer thickness on entire flow field, separated region, and reattachment length are presented and discussed. The computed reattachment distance compares reasonably well with those data reported by previous studies. A correlation is provided in terms of the rib aspect ratio, Reynolds number, and the ratio of boundary-layer thickness and rib height. The pressure drop is excessive along the upstream vertical step face and it recovers thereafter, which agrees qualitatively with those of the previous studies for the flow over backward-facing steps.

2005 ◽  
Vol 128 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Takayuki Tsutsui ◽  
Masafumi Kawahara

Heat transfer characteristics around a low aspect ratio cylindrical protuberance placed in a turbulent boundary layer were investigated. The diameters of the protuberance, D, were 40 and 80mm, and the height to diameter aspect ratio H∕D ranged from 0.125 to 1.0. The Reynolds numbers based on D ranged from 1.1×104 to 1.1×105 and the thickness of the turbulent boundary layer at the protuberance location, δ, ranged from 26 to 120mm for these experiments. In this paper we detail the effects of the boundary layer thickness and the protuberance aspect ratio on heat transfer. The results revealed that the overall heat transfer for the cylindrical protuberance reaches a maximum value when H∕δ=0.24.


1967 ◽  
Vol 27 (1) ◽  
pp. 111-130 ◽  
Author(s):  
P. Bradshaw ◽  
P. V. Galea

Measurements of the low-speed flow up a step of height equal to 1·75 times the initial boundary-layer thickness show that the flow satisfies Stratford's (1959) condition for rapid separation, the extra stress gradients being confined to the first one-eighth of the boundary-layer thickness. The increase in turbulence intensity up to separation is small, and attributable to low-frequency fluctuations in separation position. Townsend's (1962) criterion predicts the separation point fairly accurately. A simple expression is found for the additional pressure rise that can be withstood by a boundary layer already fairly near separation, which gives tolerable results at any point in the flow up a step.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012013
Author(s):  
G Yin ◽  
Y Zhang ◽  
M C Ong

Abstract Two-dimensional (2D) numerical simulations of flow over wall-mounted rectangular and trapezoidal ribs subjected to a turbulent boundary layer flow with the normalized boundary layer thickness of δ/D = 0.73,1.96,2.52 (D is the height of the ribs) have been carried out by using the Reynolds-averaged Navier-Stokes (RANS) equations combined with the k – ω SST (Shear Stress Transport) turbulence model. The angles of the two side slopes of trapezoidal rib varies from 0° to 60°. The Reynolds number based on the free-stream velocity U ∞ and D are 1 × 106 and 2 × 106. The results obtained from the present numerical simulations are in good agreement with the published experimental data. Furthermore, the effects of the angle of the two side slopes of the trapezoidal ribs, the Reynolds number and the boundary layer thickness on the hydrodynamic quantities are discussed.


Author(s):  
Artem Khalatov ◽  
Aaron Byerley ◽  
Robert Vincent

The objective of this study is to investigate the details of the average and unsteady flow structures in front, inside and after shallow (h/D = 0.1) spherical and cylindrical dimples placed on a flat plate at the different distances with different pre-dimple boundary layer thicknesses. The dimple projected (surface) diameter was 50.8 mm with the dimple centers located at 88 mm and 264 mm downstream of the elliptical leading edge of the flat plate. Experimental program was established in the U.S. Air Force Academy water tunnel, both dimple configurations were tested across the range of freestream water velocities from 0.07 to 0.52 m/s corresponding with diameter based Reynolds numbers ReD ranging from 3,200 to 23,500. The length based Reynolds number Rex ranged from 3,940 to 110,450 while the non-dimensional boundary layer thickness δ0/h ranged from 0.28 to 1.18. The inlet flow turbulence was below 1% at all flow speeds. Laminar flow existed upstream of the dimple for all of the flow conditions studied. Flow visualizations were performed inside and downstream of each dimple at 10 to 13 different flow speeds. All recordings were made with a SONY-DCR VX2000 video camera. Five different colors of dye were injected through five cylindrical ports, 1.0 mm in diameter, positioned at locations upstream and inside the dimples. Adobe Premiere 6.5 software was used to analyze the flow characteristics using the slow motion feature. LDV measurements were made both in front of and downstream of the dimple. The results presented include the vortex patterns, in-dimple separation zone extent, unsteady flow phenomena (bulk flow oscillations), velocity profiles after the dimple, and some features of the laminar-turbulent flow transition downstream of a single cylindrical dimple. The data obtained revealed three-dimensional and unsteady flow structures inside and downstream of the dimples, the important role of the pre-dimple boundary layer thickness. Increasing the δ0/h ratio reduces the downstream bulk flow oscillations at very low Reynolds numbers. However, at ReD>16,500 for the cylindrical dimple and at ReD>24,000 for the spherical dimple the boundary layer thickness had little effect on the bulk flow oscillations. A comparison of both spherical and cylindrical dimple geometric configurations was made to assess their relative benefits.


AIAA Journal ◽  
1981 ◽  
Vol 19 (11) ◽  
pp. 1386-1393 ◽  
Author(s):  
M. Sajben ◽  
J. C. Kroutil

2011 ◽  
Vol 134 (4) ◽  
Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive analysis accounting for heat transfer and aerodynamic losses on a highly loaded low pressure turbine blade with varying surface roughness. Whereas Part I focuses on heat transfer measurements at airfoil midspan with different deterministic surface roughnesses, Part II investigates surface roughness effects on aerodynamic losses of the same airfoil. A set of different arrays of deterministic roughness (the same as used in Part I) is investigated in these experiments. The height and eccentricity of the roughness elements are varied, showing the combined influence of roughness height and anisotropy on the losses produced in the boundary layers. It is shown that the boundary layer loss is dominated by the suction side. Therefore, the investigations focus on measurements of the suction side boundary layer thickness at midspan directly upstream of the trailing edge. The experiments are conducted at several freestream turbulence levels (Tu1=1.4–10.1%) and different Reynolds numbers. The measurements reveal that suction side boundary layer thickness is increased by up to 190% if surface roughness shifts the transition onset upstream. However, in some cases, at low Reynolds numbers and freestream turbulence, surface roughness suppresses boundary layer separation and decreases the trailing edge boundary layer thickness by up to 30%.


Author(s):  
M. Lorenz ◽  
A. Schulz ◽  
H.-J. Bauer

The present experimental study is part of a comprehensive analysis accounting for heat transfer and aerodynamic losses on a highly loaded low pressure turbine blade with varying surface roughness. Whereas part I focuses on heat transfer measurements at airfoil midspan with different deterministic surface roughnesses, part II investigates surface roughness effects on aerodynamic losses of the same airfoil. A set of different arrays of deterministic roughness (the same as used in part I) is investigated in these experiments. The height and eccentricity of the roughness elements is varied, showing the combined influence of roughness height and anisotropy on the losses produced in the boundary layers. It is shown that the boundary layer loss is dominated by the suction side. Therefore, the investigations focus on measurements of the suction side boundary layer thickness at midspan directly upstream of the trailing edge. The experiments are conducted at several free-stream turbulence levels (Tu1 = 1.4% to 10.1%) and different Reynolds numbers. The measurements reveal that suction side boundary layer thickness is increased by up to 190% if surface roughness shifts the transition onset upstream. However, in some cases, at low Reynolds numbers and free-stream turbulence, surface roughness suppresses boundary layer separation and decreases the trailing edge boundary layer thickness by up to 30%.


Sign in / Sign up

Export Citation Format

Share Document