Clinical accuracy of non-contact forehead infrared thermometer and infrared tympanic thermometer in postoperative adult patients: A comparative study.

2021 ◽  
pp. 175045892110223
Author(s):  
Norihiro Kameda

Core temperature monitoring is important for the assessment and prevention of possible postoperative complications. The aim of the present study was to examine the agreement between the core temperature values and the forehead, tympanic membrane and axillary values in postoperative adult patients in clinical practice. The study measured the core temperature of 65 patients undergoing scheduled abdominal surgery using SpotOn™ and compared these with those obtained using non-contact forehead infrared, infrared tympanic and axillary thermometers. Correlation and Bland–Altman analyses were conducted for these comparisons. All temperatures were recorded at 4h intervals after postoperative arrival to the ward. Forehead temperature recordings showed a good correlation with the core temperature with excellent accuracy and was comparable to the tympanic temperature. Both forehead and tympanic thermometers can rapidly and effectively measure the core temperature during early postoperative period. Considering patients’ safety, non-contact forehead infrared thermometers may be useful for postoperative monitoring.

F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 13
Author(s):  
Chakrapani Mahabala ◽  
Pradeepa H. Dakappa ◽  
Arjun R. Gupta

Background: Sublingual temperature measurement is a quick and accurate representation of oral temperature and corresponds closely with core temperature. Sub-lingual temperature measurement using non-contact infrared thermometers has not been studied for this purpose and if accurate they would be a reliable and convenient way of recording temperature of a patient very quickly. The aim of the study was to evaluate the utility of recording sublingual temperature using an infrared non-contact thermometer and establish its accuracy by comparing the readings with tympanic thermometer recordings. Methods: This cross-sectional study was carried out in 29 patients (328 paired recordings from sublingual and tympanic sites simultaneously). Subjects were requested to keep their mouth closed for five minutes before recording the temperature. Sublingual recordings were performed for each patient at different times of the day using an infrared thermometer. The infrared thermometer was quickly brought 1cm away from the sublingual part of the tongue and the recordings were then done immediately. Readings were compared with the corresponding tympanic temperature. Results: The non-contact sublingual temperature correlated very closely with tympanic temperature (r=0.86, p<0.001). The mean difference between the infrared sublingual and tympanic temperature was 0.21°C (standard deviation [SD]:0.48°C, 95% confidence interval [CI] of 0.16-0.27). The intra-class correlation co-efficient (ICC) between core and sublingual temperatures was 0.830 (95% CI: 0.794 to 0.861) p<0.001. The sensitivity of sublingual IR (infrared) temperature of 37.65°C was 90% and specificity was 89% for core temperature >38°C. Conclusions: This innovative modification of using the forehead infrared thermometer to measure the sublingual temperature offers an accurate, rapid and non-contact estimation of core temperature.


2008 ◽  
Vol 109 (2) ◽  
pp. 318-338 ◽  
Author(s):  
Daniel I. Sessler ◽  
David S. Warner ◽  
Mark A. Warner

Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature-measuring sites are completely noninvasive and easy to use-especially in patients not undergoing general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients undergoing general anesthesia exceeding 30 min in duration and in patients undergoing major operations during neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature, triggering cold defenses, including arteriovenous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, with the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extent than does general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown.


Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Byungkook Lee ◽  
Dong Hun Lee

Introduction: Extracorporeal circuit-based salvage therapy can affect targeted temperature management (TTM) in comatose out-of-hospital cardiac arrest (OHCA) survivors. We investigated the association of patients with extracorporeal device with TTM and neurological outcome. Methods: We performed a retrospective analysis using prospectively collected data from adult comatose OHCA survivors who underwent TTM between October 2015 and December 2020. We defined patients with ECMO and/or CRRT as the extracorporeal group. We calculated the cooling rate during the induction period; the minimum, maximum, and mean time-weighted core temperatures (TWCT), and the standard deviation (SD) of the core temperature and water temperature during the maintenance period based on the temperature measured every minute. We defined the sum of TWCT more and less than 33°C as positive and negative TWCT, respectively. The primary outcome was a poor neurological outcome, defined as cerebral performance category 3-5. We used propensity score (PS) matching to adjust the characteristics of patients who required an extracorporeal circuit device. Results: Of the 223 included patients, 140 (62.8%) patients had poor neurological outcome and 40 (17.9%) patients were categorized into the extracorporeal group. The extracorporeal group had a rapid cooling rate (2.08°C/h [1.13-3.73] vs. 1.24°C/h [0.77-1.79]; p < 0.001). The extracorporeal group had lower mean core temperature; higher core temperature SD; lower positive TWCT; higher negative TWCT; and higher maximum, minimum, and mean water temperature than the no-extracorporeal group. In PS matched cohort, the extracorporeal group had a lower minimum core temperature, lower mean core temperature, higher core temperature SD, higher negative TWCT, higher maximum water temperature, and higher mean water temperature. The neurological outcomes were not different between the two groups, in either the whole or PS-matched cohort. Conclusions: The extracorporeal group achieved the target temperature earlier. The core temperature distribution during the maintenance period was further skewed below 33°C in the extracorporeal group. The extracorporeal group had similar neurological outcomes to the no-extracorporeal group.


1984 ◽  
Vol 247 (3) ◽  
pp. R418-R426
Author(s):  
P. H. Gander ◽  
R. E. Kronauer ◽  
C. A. Czeisler ◽  
M. C. Moore-Ede

Our two-oscillator model was originally designed to describe the circadian rhythms of human subjects maintained in temporal isolation. The performance of this model in response to simulated environmental synchronizing cycles (zeitgebers) is examined here. Six distinct types of synchronization are demonstrated between the x oscillator (postulated to regulate the core temperature rhythm), the y oscillator (postulated to regulate the rest-activity rhythm), and z (the zeitgeber). Four types of synchronization are identifiable, if we consider only the periods of the three oscillators. Both x and y may be synchronized by z; either may synchronize with z while the other exhibits a different period; or x, y, and z may each show different periods. Two further classes of synchronization are discernible when phase criteria are taken into account. When either x or y is on the verge of desynchronizing from the other two oscillators, it undergoes periodic phase modulations while retaining the common overall period. The type of synchronization observed depends on the periods of x, y, and z and on the strength of the z drive. The effects of modifying each of these parameters have been systematically investigated by simulation, and model performance is summarized in terms of range of entrainment "maps." These constitute extensive sets of predictions about expected patterns of entrainment of the core temperature and rest-activity rhythms of human subjects exposed to various environmental zeitgebers. Experimental data are available against which model predictions can be tested.


Sign in / Sign up

Export Citation Format

Share Document