scholarly journals Effects of cough-jet on airflow and contaminant transport in an airliner cabin section

2017 ◽  
Vol 10 (2) ◽  
pp. 72-82 ◽  
Author(s):  
Lin Yang ◽  
Xiangdong Li ◽  
Yihuan Yan ◽  
Jiyuan Tu

The goals of this study were to investigate the effect of cough-jet on local airflow and contaminant transport in a typical cabin environment by using computational fluid dynamics. A fully occupied airliner cabin section was employed as the computational domain. Contaminants were released through coughing passengers from different locations inside the cabin. Numerical results in terms of contaminant transport characteristics were examined and compared. It can be concluded that cough-jet has significant effects on air flow in front of cough passenger in a short period of time. Also, it was found that, without considering the cough-jet model, the simulation results could not be a precise representation of the transport and distribution of cough-generated airborne contaminants.

2018 ◽  
Vol 159 ◽  
pp. 02038 ◽  
Author(s):  
Tony Utomo ◽  
Berkah Fajar ◽  
Hendry Arpriyanto

In this study, the aerodynamics characteristics of HST type CRH380A which is planned to be operated on the new railway of Jakarta-Bandung are analysed using Computational Fluid Dynamics. The speed of the train in this simulation was varied from 100 km/h to a maximum designed speed of 350 km/h with the increment of 30 km/h. The train was modelled in 3D computational domain with more than 1.7 million cells. The turbulence model employed in this study was standard k-ω. The simulation results show that the drag coefficient (CD) is slightly decrease by the increase of speed. At the speed of 100 km/h the CD is 0.216 and decrease to 0.188 at the speed of 350 km/h. The high pressure area is located at the nose of the train. The pressure acting on this location is increase with the increase of the train speed.


2014 ◽  
Vol 1048 ◽  
pp. 575-578
Author(s):  
Mei Ling Li ◽  
Chong Wen Yu ◽  
Shan Shan Shang

Effects of the distance between guided needle and cone body on properties of MVS yarns were investigated by numerical simulation. 5 groups of the distance are designed (0.5mm, 1mm, 1.5mm, 2mm and 2.5mm). The 3D computational fluid dynamics models are established to conduct the numerical simulation of the airflow in the nozzle. Through analysis of the characteristics of air flow inside the different nozzles, such as pressure distribution and velocity vectors, the motion of drafted fibers and performances of yarns are discussed. Simulation results show that when the distance is 1.5mm, the airflow state within the nozzle is beneficial to form more open-ends and twist, and the yarn quality would be better.


2021 ◽  
Vol 11 (5) ◽  
pp. 2391
Author(s):  
Jose I. Huertas ◽  
Javier E. Aguirre ◽  
Omar D. Lopez Mejia ◽  
Cristian H. Lopez

The effects of using solid barriers on the dispersion of air pollutants emitted from the traffic of vehicles on roads located over flat areas were quantified, aiming to identify the geometry that maximizes the mitigation effect of air pollution near the road at the lowest barrier cost. Toward that end, a near road Computational Fluid Dynamics (NR-CFD) model that simulates the dispersion phenomena occurring in the near-surface atmosphere (<250 m high) in a small computational domain (<1 km long), via Computational Fluid Dynamics (CFD) was used. Results from the NR-CFD model were highly correlated (R2 > 0.96) with the sulfur hexafluoride (SF6) concentrations measured by the US-National Oceanic and Atmospheric Administration (US-NOAA) in 2008 downwind a line source emission, for the case of a 6m near road solid straight barrier and for the case without any barrier. Then, the effects of different geometries, sizes, and locations were considered. Results showed that, under all barrier configurations, the normalized pollutant concentrations downwind the barrier are highly correlated (R2 > 0.86) to the concentrations observed without barrier. The best cost-effective configuration was observed with a quarter-ellipse barrier geometry with a height equivalent to 15% of the road width and located at the road edge, where the pollutant concentrations were 76% lower than the ones observed without any barrier.


Author(s):  
Shamia Hoque ◽  
Firoza Omar

Cross-contamination between occupants in an indoor space may occur due to transfer of infectious aerosols. Computational fluid dynamics (CFD) provides detailed insight into particle transport in indoor spaces. However, such simulations are site-specific. This study couples CFD with statistical moments and establishes a framework that transitions site-specific results to generating guidelines for designing “healthy” indoor spaces. Eighteen cases were simulated, and three parameters were assessed: inlet/outlet location, air changes per hour, and the presence/absence of desks. Aerosol release due to a simulated “sneeze” in a two-dimensional ventilated space was applied as a test case. Mean, standard deviation, and skewness of the velocity profiles and particle locations gave an overall picture of the spread and movement of the air flow in the domain. A parameter or configuration did not dominate the values, confirming the significance of considering the combined influence of multiple parameters for determining localized air-flow characteristics. Particle clustering occurred more when the inlet was positioned above the outlet. The particle dispersion pattern could be classified into two time zones: “near time”, <60 s, and “far time”, >120 s. Based on dosage, the 18 cases were classified into three groups ranging from worst case scenario to best case scenario.


2013 ◽  
Vol 368-370 ◽  
pp. 619-623
Author(s):  
Zhen Liu ◽  
Xiao Ling Wang ◽  
Ai Li Zhang

For the purpose of avoiding the deficiency of the traditional construction ventilation, the ventilation of the underground main powerhouse is simulated by the computational fluid dynamics (CFD) to optimize ventilation parameters. A 3D unsteady RNG k-ε model is performed for construction ventilation in the underground main powerhouse. The air-flow field and CO diffusion in the main powerhouse are simulated and analyzed. The two construction ventilation schemes are modelled for the main powerhouse. The optimized ventilation scheme is obtained by comparing the air volume and pressure distributions of the different ventilation schemes.


2017 ◽  
Vol 27 (10) ◽  
pp. 1379-1391 ◽  
Author(s):  
Jihong Wang ◽  
Tengfei (Tim) Zhang ◽  
Hongbiao Zhou ◽  
Shugang Wang

To design a comfortable aircraft cabin environment, designers conventionally follow an iterative guess-and-correction procedure to determine the air-supply parameters. The conventional method has an extremely low efficiency but does not guarantee an optimal design. This investigation proposed an inverse design method based on a proper orthogonal decomposition of the thermo-flow data provided by full computational fluid dynamics simulations. The orthogonal spatial modes of the thermo-flow fields and corresponding coefficients were firstly extracted. Then, a thermo-flow field was expressed into a linear combination of the spatial modes with their coefficients. The coefficients for each spatial mode are functions of air-supply parameters, which can be interpolated. With a quick map of the cause–effect relationship between the air-supply parameters and the exhibited thermo-flow fields, the optimal air-supply parameters were determined from specific design targets. By setting the percentage of dissatisfied and the predicted mean vote as design targets, the proposed method was implemented for inverse determination of air-supply parameters in two aircraft cabins. The results show that the inverse design using computational fluid dynamics-based proper orthogonal decomposition method is viable. Most of computing time lies in the construction of data samples of thermo-flow fields, while the proper orthogonal decomposition analysis and data interpolation is efficient.


2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Ling Zhou ◽  
Lingjie Zhang ◽  
Weidong Shi ◽  
Ramesh Agarwal ◽  
Wei Li

A coupled computational fluid dynamics (CFD)/discrete element method (DEM) is used to simulate the gas–solid two-phase flow in a laboratory-scale spouted fluidized bed. Transient experimental results in the spouted fluidized bed are obtained in a special test rig using the high-speed imaging technique. The computational domain of the quasi-three-dimensional (3D) spouted fluidized bed is simulated using the commercial CFD flow solver ANSYS-fluent. Hydrodynamic flow field is computed by solving the incompressible continuity and Navier–Stokes equations, while the motion of the solid particles is modeled by the Newtonian equations of motion. Thus, an Eulerian–Lagrangian approach is used to couple the hydrodynamics with the particle dynamics. The bed height, bubble shape, and static pressure are compared between the simulation and the experiment. At the initial stage of fluidization, the simulation results are in a very good agreement with the experimental results; the bed height and the bubble shape are almost identical. However, the bubble diameter and the height of the bed are slightly smaller than in the experimental measurements near the stage of bubble breakup. The simulation results with their experimental validation demonstrate that the CFD/DEM coupled method can be successfully used to simulate the transient gas–solid flow behavior in a fluidized bed which is not possible to simulate accurately using the granular approach of purely Euler simulation. This work should help in gaining deeper insight into the spouted fluidized bed behavior to determine best practices for further modeling and design of the industrial scale fluidized beds.


2006 ◽  
Vol 129 (1) ◽  
pp. 252-260 ◽  
Author(s):  
Song-Charng Kong ◽  
Hoojoong Kim ◽  
Rolf D. Reitz ◽  
Yongmo Kim

Diesel engine simulation results using two different combustion models are presented in this study, namely the representative interactive flamelet (RIF) model and the direct integration of computational fluid dynamics and CHEMKIN. Both models have been implemented into an improved version of the KIVA code. The KIVA/RIF model uses a single flamelet approach and also considers the effects of vaporization on turbulence-chemistry interactions. The KIVA/CHEMKIN model uses a direct integration approach that solves for the chemical reactions in each computational cell. The above two models are applied to simulate combustion and emissions in diesel engines with comparable results. Detailed comparisons of predicted heat release data and in-cylinder flows also indicate that both models predict very similar combustion characteristics. This is likely due to the fact that after ignition, combustion rates are mixing controlled rather than chemistry controlled under the diesel conditions studied.


Sign in / Sign up

Export Citation Format

Share Document