scholarly journals THE CYTOCHEMICAL LOCALIZATION OF GLYCOLYTIC AND OXIDATIVE ENZYMES WITHIN MITOCHONDRIA OF SPERMATOZOA OF SOME PULMONATE GASTROPODS

1970 ◽  
Vol 18 (11) ◽  
pp. 783-793 ◽  
Author(s):  
WINSTON A. ANDERSON ◽  
PAUL PERSONNE

In this electron microscopic cytochemical study, the periodic acid-thiosemicarbazide-silver proteinate procedure was used to demonstrate glycogen stores within the mitochondrial derivative of sperm of pulmonate gastropods. In the presence of phenazine methosulfate and tetrazolium salt, enzymatic activity for glyceraldehyde 3-phosphate dehydrogenase and lactate dehydrogenase is shown in the matrix and in the compartment containing glycogen, but in the absence of phenazine methosulfate, tetrazolium reductase activity in the matrix is emphasized. Activity for NADH2-tetrazolium reductase and succinate dehydrogenase is also demonstrated in the matrix. Using 3,3'-diaminobenzidine tetra-HCl, cytochrome c oxidase activity is shown in the paracrystalline mitochondrial structure. The interrelation between glycolytic and oxidative pathways in this highly compartmentalized mitochondrion is considered.

1975 ◽  
Vol 23 (1) ◽  
pp. 75-79 ◽  
Author(s):  
B J Bogitsh

The mitochondrial derivative of the sperm of the gastropod pulmonate Biomphalaria glabrata was studies to ascertain succinic dehydrogenase localization cytochemically. Two techniques were compared. One technique depends on a tetrazolium salt that yields an osmiophilic formazan upon reduction. The other technique is dependent on the reduction of copper ferricyanide. The effects of several electron transport inhibitors were studied. The reaction product observed in the matrix of the mitochondrial derivative using the former technique is sensitive to rotenone and is believed to be nicotinamide adenine dinucleotide-dependent. The reaction product observed in the intracristal spaces using the copper ferricyanide method is insensitive to rotenone and is believed to cytochemically demonstrate succinic dehydrogenase in this material.


1990 ◽  
Vol 38 (9) ◽  
pp. 1377-1381 ◽  
Author(s):  
M E Beard

D-amino acid oxidase, a peroxisomal enzyme, and D-aspartate oxidase, a potential peroxisomal enzyme, share biochemical attributes. Both produce hydrogen peroxide in flavin-requiring oxidative reactions. Such similarities suggest that D-aspartate oxidase may also be localized to peroxisomes. Definitive identification of D-aspartate oxidase as a peroxisomal enzyme depends, however, on visualization at the electron microscopic level. Using incubation conditions shown to be specific for the enzyme in biochemical studies, this report extends the cytochemical localization of D-amino acid oxidase to bovine renal peroxisomes, and shows that D-aspartate can be oxidized by rat and bovine renal peroxisomes. An unexpected finding was the sensitivity of both D-amino acid oxidase activity (proline specific) and D-aspartate oxidase activity to inhibition by agents used in biochemical studies to discriminate between the two enzyme activities. Therefore, it is possible that, in the cytochemical system used in this study, (a) either D-proline and D-aspartate are substrates for only one enzyme or (b) the two enzymes have additional overlapping biochemical properties.


1958 ◽  
Vol 4 (6) ◽  
pp. 747-752 ◽  
Author(s):  
D. G. Scarpelli ◽  
R. Hess ◽  
A. G. E. Pearse

Cytochemical methods involving metal chelation of the formazan of an N-thiazol-2-yl tetrazolium salt are described for the localization of diphosphopyridine nucleotide diaphorase (DPND) and triphosphopyridine nucleotide diaphorase (TPND) in mitochondria. These methods utilize the reduced coenzymes DPNH or TPNH as substrate. The reaction involves a direct transfer of electrons from reduced coenzyme to the respective diaphorase which in turn transfers the electrons to tetrazolium salt, reducing it to the insoluble formazan. Competition for electrons by preferential acceptors in the respiratory chain was prevented by various inhibitors. In the presence of respiratory inhibitors the rate of tetrazolium reduction was markedly increased. The greatest reduction was observed when amytal was used. Sites of diaphorase activity appeared as deposits of blue-black metal formazan chelate measuring 0.2 to 0.3 µ in diameter. Small mitochondria contained 2 deposits, while larger ones contained up to 6. Considerable differences were observed in the rate of tetrazolium reduction and cellular localization of diaphorase activity when DPNH was used as substrate as compared to TPNH. In each instance DPNH was oxidized more rapidly by tissues than TPNH. These findings support the concept that the oxidation of coenzymes I and II is mediated through separate diaphorases.


1964 ◽  
Vol 29 (1) ◽  
pp. 1-7 ◽  
Author(s):  
H. J. SOBEL

SUMMARY The cytochemical distribution and changes of ten oxidative enzyme systems were studied in rat anterior pituitary and thyroid glands in various phases of secretory activity. Enzyme activity was always localized to discrete, small cytoplasmic particles thought to be mitochondria. Reduced diphosphopyridine nucleotide (DPNH)-Nitro-BT reductase activity in the thyroid gland was also found in nuclear membranes and in cytoplasmic clumps (probably endoplasmic reticulum). There was an apparent increase in number and size and migration toward the Golgi zone of these granules (mitochondria ?) in gonadotrophic cells of castrated rats. No apparent difference was observed in the thyroid gland following thyroxine treatment and exposure to cold.


1958 ◽  
Vol 4 (6) ◽  
pp. 753-760 ◽  
Author(s):  
R. Hess ◽  
D. G. Scarpelli ◽  
A. G. E. Pearse

Methods are presented for the intramitochondrial localization of various diphosphopyridine nucleotide and triphosphopyridine nucleotide-linked dehydrogenases in tissue sections. The cytochemical reactions studied involve the oxidation of the substrates by a specific pyridino-protein. The electron transfer of tetrazolium salt is mediated by the diaphorase system associated with the dehydrogenase. The final electron acceptor was either p-nitrophenyl substituted ditetrazole (nitro-BT) or N-thiazol-2-yl monotetrazole (MTT), the latter giving rise to metal formazan in the presence of cobaltous ions. Mitochondrial localization of the formazan precipitate could be achieved by using hypertonic incubating media containing high concentrations of substrate and co-enzyme. A fast reduction of tetrazolium salt was obtained by chemically blocking the respiratory chain enzymes beyond the flavoproteins. Although diaphorase systems are implicated in the reduction of tetrazolium salts, specific dehydrogenases are solely responsible for the distinct distribution pattern obtained in tissues with various substrates. The present findings in tissue sections are discussed in conjunction with existing biochemical evidence from differential centrifugation experiments.


Author(s):  
George E. Childs ◽  
Joseph H. Miller

Biochemical and differential centrifugation studies have demonstrated that the oxidative enzymes of Acanthamoeba sp. are localized in mitochondria and peroxisomes (microbodies). Although hartmanellid amoebae have been the subject of several electron microscopic studies, peroxisomes have not been described from these organisms or other protozoa. Cytochemical tests employing diaminobenzidine-tetra HCl (DAB) and hydrogen peroxide were used for the ultrastructural localization of peroxidases of trophozoites of Hartmanella sp. (A-l, Culbertson), a pathogenic strain grown in axenic cultures of trypticase soy broth.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
Judith A. Murphy ◽  
Mary R. Thompson ◽  
A.J. Pappelis

In an attempt to identify polysaccharide components in thin sections of D. maydis, procedures were employed such that a PAS localization could be carried out. Three different fixatives were evaluated ie. glutaraldehyde, formaldehyde and paraformaldehyde. These were used in conjunction with periodic acid (PA), thiosemicarbazide(TSC), and osmium tetroxide(Os) to localize polysaccharides in V. maydis using a pre-embedded reaction procedure. Polysaccharide localization is based on the oxidation of vic-glycol groups by PA, and the binding of TSC as a selective reaction center for the formation of osmium black. The reaction product is sufficiently electron opaque, insoluble in lipids, not altered when tissue is embedded, and has a fine amorphous character.


Author(s):  
Dong Yuming ◽  
Yang Guanglin ◽  
Du Wei Dong ◽  
Xu Ai Liam

The activities and distributions of AKPase ,ACPase,G6Pase,TPPase and COase in human normal gastric mucosa and gastric cancer tissues were studied histochemically at light microscopic level. These enzymes are the marker enzymes of cell membrane lysosome endoplasmic reticulum, Golgi apparatus and mitochondrion objectively. On the basis of the research we set up a special ultrastructural cytochemical technique and first researched into gastric cancer domesticly. Ultrastructural cytochemistry is also called electron microscopic cytochemistry. This new technique possesses both the sensitivity of cytochemical reaction andi the high resolution of electron microscope. It is characterized by direct observation,exact localization and the combination morphology with function.The distributions of AKPase,ACPase,G6Pase,TPPase and COase in 14 cases of gastric cancer and 1 case of gastric Denign lesion were studied ultrastructurally. The results showed: 1. normal gastric epithelium had no AKPase reaction. The reaction of ACPase,G6Pase,TPPase and Coase were found in the corresponding organella, which were consistent with their function.


1994 ◽  
Vol 31 (5) ◽  
pp. 546-552 ◽  
Author(s):  
T. Yanai ◽  
T. Masegi ◽  
K. Ueda ◽  
J. Manabe ◽  
M. Teranishi ◽  
...  

Mineralization of various degrees was found in the brains of 79 (59%) of 134 cynomolgus monkeys ( Macaca fascicularis). There was no age dependency in the incidence or severity, nor were there any abnormalities in growth, weight gain, or neurologic signs, although a slight sex difference was observed. The lesions, which were basophilic and intensely positive for periodic acid-Schiff or von Kossa stain, occurred in the vascular walls of the globus pallidus in two types: globoid bodies with prominent concentric lamellar structures in and around the arteriolar and venular wall (type A) and fine granules in the media of small or medium-sized arteries (type B). Electron microscopic examination revealed dense deposits in the degenerated media of small or medium-sized arteries or the thickened walls of the arterioles. X-ray microanalysis demonstrated the presence of calcium, phosphorus, iron, zine, magnesium, and aluminum.


Sign in / Sign up

Export Citation Format

Share Document