The Effect of Copper on Endometrial Receptivity and Induction of Apoptosis on Decidualized Human Endometrial Stromal Cells

2017 ◽  
Vol 25 (7) ◽  
pp. 985-999 ◽  
Author(s):  
Jose P. Carrascosa ◽  
David Cotán ◽  
Inmaculada Jurado ◽  
Manuel Oropesa-Ávila ◽  
Pascual Sánchez-Martín ◽  
...  
2012 ◽  
Vol 24 (3) ◽  
pp. 517 ◽  
Author(s):  
U. Doyle ◽  
N. Sampson ◽  
C. Zenzmaier ◽  
P. Schwärzler ◽  
P. Berger

In preparation for embryo implantation, endometrial stromal cells (ESC) undergo differentiation, termed decidualisation. Enhancing endometrial decidualisation may overcome reduced endometrial receptivity, a major limiting factor in natural and assisted reproduction. To determine whether seminal plasma (SP) influences decidualisation, primary human ESC were treated with progesterone (P4, 50 ng mL–1) in the presence or absence of dialysed SP (0.5%) for 24 h or for up to 27 days to investigate immediate early effects or the effects of prolonged exposure, respectively. Combined SP and P4 treatment induced ESC morphological differentiation. Relative to control, P4 alone, and SP alone combined treatment with SP and P4 for 27 days significantly upregulated mRNA levels of the decidua-specific markers prolactin (PRL) and insulin-like growth factor binding protein 1 (IGFBP1). Consistently, PRL protein secretion was significantly increased over the course of 27 days combined SP and P4 treatment relative to control, P4 alone and SP alone. Likewise, IGFBP1 secretion was significantly greater relative to control and P4 alone over the course of 27 days. Thus, SP enhances and accelerates P4-mediated decidualisation of human ESC and may enhance endometrial receptivity.


Reproduction ◽  
2020 ◽  
Author(s):  
Yingying Zhou ◽  
Yangying Peng ◽  
Qingqing Xia ◽  
Dewen Yan ◽  
Huiping Zhang ◽  
...  

Indian hedgehog (Ihh) signaling regulates endometrial receptivity and is an indispensable mediator of embryonic implantation. Hedgehog signaling is known to regulate autophagy, and aberrant regulation of autophagy is critically implicated in the pathogenesis of endometriosis and adenomyosis. However, potential dysregulation of Ihh signaling and its role in autophagy modulation in these diseases remain obscure. In this study, we found that components of Ihh signaling were significantly decreased, whereas the autophagy marker protein, LC3BII, was significantly increased in endometrial tissues of women with endometriosis or adenomyosis. Inhibition of Ihh signaling with the small molecule inhibitor, GANT61, or Gli1 silencing in primary endometrial stromal cells increased autophagic activity, as measured by the LC3 turnover assay and tandem mCherry-eGFP-LC3B fluorescence microscopy. Furthermore, we observed that GANT61 treatment significantly attenuated hydrogen peroxide-induced cell death, whereas disruption of autophagy with chloroquine diminished this effect. Collectively, these findings reveal that Ihh signaling is suppressed in endometrial tissues of patients with endometriosis or adenomyosis. This abnormal decrease may contribute to endometrial autophagy activation, which may promote aberrant survival of endometrial cells in ectopic sites in these two gynecological diseases.


2021 ◽  
Author(s):  
Xiaowei Zhou ◽  
Yi Cao ◽  
mingjuan Zhou ◽  
Mi Han ◽  
mengyu Liu ◽  
...  

Abstract BackgroundThe precise pathogenesis of poor endometrial receptivity in recurrent implantation failure (RIF) still remains unclear. This study aims to explore the effects of different CD44 isoforms in the mid-secretory phase endometrium on endometrial receptivity in women with RIF.MethodsMid-secretory phase endometrial tissue samples were obtained from two groups of women who had undergone IVF: a) 24 patients with RIF, b) 18 patients with infertility due to tubal obstruction, who had achieved a successful clinical pregnancy after the first embryo transfer in IVF (control group). Identification of differentially expressed CD44 isoforms in endometrial tissues was assessed with immunohistochemistry, qPCR and western blotting. Effects of CD44v3 overexpression and knockdown on proliferation and decidualization of Immortalized human endometrial stromal cells (T-HESCs) and primary HESCs were investigated by qPCR and Western blot. A heterologous co-culture system of embryo implantation was constructed to mimics the process of trophoblast invasion during implantation.ResultsCD44v3 was significantly higher expressed in mid-secretory phase of endometrial stromal cells than proliferation phase, but was notably lower in RIF patients. The expression of decidualization markers, prolactin (PRL) and insulin like growth factor binding protein-1 (IGFBP1), was notably decreased following CD44v3 knockdown, whereas the expression levels of both PRL and IGFBP1 increased after CD44v3 overexpression in HESCs. Furthermore, the CD44v3-knockdown HESCs displayed a significantly deficiency in supporting trophoblast outgrowth through a co-culture system of embryo implantation; however, CD44v3 overexpression in HESCs promoted trophoblast outgrowth.ConclusionThe reduced expression of CD44v3 suppresses HESCs proliferation and decidualization, which might play a pivotal role in poor endometrial receptivity in women with RIF.


Reproduction ◽  
2020 ◽  
Vol 160 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Maria Jose Ruiz Magaña ◽  
Jose Maria Puerta ◽  
Rocio Martínez-Aguilar ◽  
Tatiana Llorca ◽  
Osmany Blanco ◽  
...  

Endometrial stromal cells (EnSCs) and decidual stromal cells (DSCs) originate from fibroblastic precursors located around the vessels of the human nonpregnant endometrium and the pregnant endometrium (decidua), respectively. Under the effect of ovarian or pregnancy hormones, these precursors differentiate (decidualize), changing their morphology and secreting factors that appear to be essential for the normal development of pregnancy. However, the different physiological context – that is, non-pregnancy vs pregnancy – of those precursors (preEnSCs, preDSCs) might affect their phenotype and functions. In the present study, we established preEnSC and preDSC lines and compared the antigen phenotype and responses to decidualization factors in these two types of stromal cell line. Analyses with flow cytometry showed that preEnSCs and preDSCs exhibited a similar antigen phenotype compatible with that of bone marrow mesenchymal stem/stromal cells. The response to decidualization in cultures with progesterone and cAMP was evaluated by analyzing changes in cell morphology by microscopy, prolactin and IL-15 secretion by enzyme immunoassay and the induction of apoptosis by flow cytometry. In all four analyses, preDSCs showed a significantly higher response than preEnSCs. The expression of progesterone receptor (PR), protein kinase A (PKA) and FOXO1 was studied with Western blotting. Both types of cells showed similar levels of PR and PKA, but the increase in PKA RI subunit expression in response to decidualization was again significantly greater in preDSCs. We conclude that preEnSCs and preDSCs are equivalent cells but differ in their ability to decidualize. Functional differences between them probably derive from factors in their different milieus.


2015 ◽  
Vol 75 (07) ◽  
Author(s):  
J Thomczik ◽  
I Beyer ◽  
DM Baston-Büst ◽  
SJ Böddeker ◽  
G Wennemuth ◽  
...  

2006 ◽  
Vol 114 (S 1) ◽  
Author(s):  
S Krenzer ◽  
H Fluhr ◽  
M Deperschmidt ◽  
M Zwirner ◽  
D Wallwiener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document