scholarly journals A new 14,15-dinor-labdane Glucoside from Crassocephalum Mannii

2008 ◽  
Vol 3 (6) ◽  
pp. 1934578X0800300
Author(s):  
Mohamed-Elamir F. Hegazy ◽  
Ashraf A. Aly ◽  
Ahmed A. Ahmed ◽  
Djemgou C. Pierre ◽  
Pierre Tane ◽  
...  

A new 14,15-dinor-labdane glucoside, named crassoside A (1), was isolated from the aerial parts of Crassocephalum mannii. The structure of 1 was elucidated on the basis of spectroscopic analysis (1H NMR, 13C NMR, HMQC, HMBC and NOEs). Compound 1 demonstrated a low inhibitory effect against COX-1, but was inactive against COX-2.

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zafer Sahin ◽  
Yağmur Özhan ◽  
Hande Sipahi ◽  
Sevde Nur Biltekin ◽  
Leyla Yurttaş ◽  
...  

Abstract Novel benzofurane-pyrazolone hybrids have been synthesized for evaluating their anti-inflammatory and cytotoxic properties. 4-(2-chloroacetyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one were reacted with α-hydroxy aldehyde or α-hydroxy ketone derivatives to obtain nine novel pyrazolone derivatives. Structures were successfully elucidated by 1H NMR, 13C NMR, IR and HRMS. Enzyme inhibitory activity was measured on cyclooxygenases (COXs) as considered to address anti-inflammatory activity. Compound 2 showed the highest activity on both COX-1 and COX-2 subtypes with 12.0 μM and 8.0 μM IC50, respectively. This activity was found close to indomethacin COX-2 inhibition measured as 7.4 μM IC50. Rest of the compounds (1, 3–9) showed 10.4–28.1 μM IC50 on COX-2 and 17.0–35.6 μM IC50 on COX-1 (Compound 1 has no activity on COX-1). Tested compounds (1–9) showed activity on NO production. Only compound was the 4, which showed a low inhibition on IL-6 levels. Cell viability was up to 60% at 100 μM for all compounds (1–9) on RAW 264.7 and NIH3T3 cell lines, thus compounds were reported to be noncytotoxic.


Author(s):  
Ahmed Basim ◽  
Zuhair A. Muhi Eldeen ◽  
Elham N. Al-kaissi ◽  
Ghadeer Suaifan ◽  
Mohammad A. Ghattas ◽  
...  

<p><strong>Objective: </strong>To design and synthesise a new amino acetylenic tetrahydro phthalimide derivative and investigate their selective inhibitory activity to COXs.</p><p><strong>Methods: </strong>Aminoacetylenic tetrahydro phthalimide derivatives were synthesised by alkylation of tetrahydro phthalimide with propargyl bromide afforded 2-(prop-2-yn-1-yl)-2,3,3a,4,7,7a-hexahydro-1H-isoindole-1,3-dione. The alkylated tetrahydro phthalimide was subjected to Mannich reaction afforded the desired amino acetylenic tetra phthalimide derivatives (AZ 1-6). The elemental analysis was indicated by the EuroEA elemental analyzer and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC was determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer and DMSO-d<sub>6</sub> as a solvent, molecular docking was done using the Autodock Tool software (version 4.2). ChemBioDraw was used in the drawing of our schemes.</p><p><strong>Results</strong>:<strong> </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. The designers of the compounds as COXs inhibitor activity were based on the nationalisation of the important criteria that provide effective inhibitory binding with COXs–receptor. The results indicated that the synthesised compounds (AZ1-6) showed a close similarity in the binding affinity to both COXs and may be more specific to COX-1. AZ-5 showed the highest % of inhibition for COX-1 even better than aspirin. Which may suggest that the aryl group is required for COX-2 inhibition.</p><p><strong>Conclusion: </strong>For the first time, we indicate the requirement of aromaticity in COX-2 structural inhibitory activity. </p>


2013 ◽  
Vol 68 (5-6) ◽  
pp. 175-180
Author(s):  
Abou El-Hamd H. Mohamed ◽  
Hosam-Eldin H. Mahmoud ◽  
Fathy F. Abdellatif ◽  
Yousif S. Mohamed ◽  
Ahmed A. Ahmed

The aerial parts of Inula verbascifolia afforded two new guaianolide-type sesquiterpene lactones. Their structures were determined by spectroscopic methods (IR, MS, 1H NMR, 13C NMR, DEPT, 1H-1H COSY, HMQC, and HMBC).


2020 ◽  
Author(s):  
Shijun Su ◽  
Mei Chen ◽  
Xuemei Tang ◽  
Feng Peng ◽  
Tingting Liu ◽  
...  

Abstract A series of pyrimidine-containing 4H-chromen-4-one derivatives were designed and synthesized by combining bioactive substructures. All compounds were characterized using 1H NMR, 13C NMR, 19F NMR and HRMS. Preliminary biological activity results showed that most of title compounds displayed significant inhibitory activity against Xanthomonas axonopodis pv. Citri (Xac), Xanthomonas oryzae pv. oryzae (Xoo) and Ralstonia solanacearum (Rs). In particular, compound 4c demonstrated a good inhibitory effect against Xac and Xoo, with half-maximal effective concentration(EC50) values of 15.5 and 14.9 μg/mL respectively, and that of compound 4h showed the best antibacterial activity against Rs with an EC50 value of 14.7 μg/mL, These results were better than both bismerthiazol (BT, 51.7, 70.1 and 52.7 μg/mL, respectively) and thiodiazole copper (TC, 77.9, 95.8 and 72.1 μg/mL respectively). In vivo antibacterial activity results indicated that compound 4c displayed better curative(42.4%) and protective (49.2%) activities for reducing rice bacterial leaf blight than both BT (35.2, 39.1%) and TC (30.8, 27.3%). The mechanism of compound 4c against Xoo was analysed through scanning electron microscopy (SEM). Results showed that the compound destroied the bacterial cell membrane structure. These results indicated that pyrimidine-containing 4H-chromen-4-one derivatives are valuable in the research of new agrochemicals.


2009 ◽  
Vol 103 (8) ◽  
pp. 1102-1109 ◽  
Author(s):  
Sofia Karlsson ◽  
Eewa Nånberg ◽  
Christina Fjaeraa ◽  
Jonny Wijkander

Ellagic acid, a natural polyphenol found in certain fruits, nuts and vegetables, has in recent years been the subject of intense research within the fields of cancer and inflammation. Pain, fever and swelling, all typical symptoms of inflammation, are ascribed to elevated levels of PGE2. In the present study, we have investigated the effects of ellagic acid on PGE2 release and on prostaglandin-synthesising enzymes in human monocytes. Ellagic acid was found to inhibit Ca ionophore A23187-, phorbol myristate acetate- and opsonised zymosan-induced release of PGE2 from monocytes pre-treated with the inflammatory agent lipopolysaccharide. Ellagic acid suppressed the lipopolysaccharide-induced increase in protein expression of cyclo-oxygenase-2 (COX-2), microsomal PGE synthase-1 (mPGEs-1) and cytosolic phospholipase A2α (cPLA2α), while it had no effect on the constitutively expressed COX-1 protein. Ellagic acid had no apparent inhibitory effect on these enzymes when the activities were determined in cell-free assays. We conclude that the inhibitory effect of ellagic acid on PGE2 release from monocytes is due to a suppressed expression of COX-2, mPGEs-1 and cPLA2α, rather than a direct effect on the activities of these enzymes.


2015 ◽  
Vol 61 (2) ◽  
pp. 7-13 ◽  
Author(s):  
Joanna Nawrot ◽  
Renata Dawid-Pać ◽  
Kinga Kaczerowska-Pietrzak ◽  
Maria Urbańska ◽  
Gerard Nowak
Keyword(s):  
H Nmr ◽  

Summary From the aerial parts of Zoegea leptaurea subsp. mesopotamica (Czerep.) Rech. (syn Zoegea mesopotamica Czerep.), 9α-hydroxyparthenolide was isolated. This compound was identified by spectral methods (1H NMR and 13C NMR). This research confirmed earlier indications about the presence of 4,5-epoxygermacranolides in the Zoegea L. genus. Thus, distinctive chemistry feature of plants in this taxon has chemotaxonomic implications.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 659
Author(s):  
Christophe Tratrat ◽  
Michelyne Haroun ◽  
Aliki Paparisva ◽  
Charalmpos Kamoutsis ◽  
Anthi Petrou ◽  
...  

Background: Inflammation is a complex response to noxious stimuli promoted by the release of chemical mediators from the damaged cells. Metabolic products of arachidonic acid, produced by the action of cyclooxygenase and lipoxygenase, play important roles in this process. Several non-steroidal anti-inflammatory drugs act as cyclooxygenase inhibitors. However, almost all of them have undesired side effects. Methods: Prediction of the anti-inflammatory action of the compounds was performed using PASS Program. The anti-inflammatory activity was evaluated by the carrageenan paw edema test. COX and LOX inhibitory actions were tested using ovine COX-1, human recombinant COX-2 and soybean LOX-1, respectively. Docking analysis was performed using Autodock. Results: All designed derivatives had good prediction results according to PASS and were synthesized and experimentally evaluated. The compounds exhibited in vivo anti-inflammatory action with eleven being equal or better than indomethacin. Although, some of them had no or low inhibitory effect on COX-1/2 or LOX, certain compounds exhibited COX-1 inhibition much higher than naproxen and COX-2 inhibition, well explained by Docking analysis. Conclusions: A number of compounds with good anti-inflammatory action were obtained. Although, some exhibited remarkable COX inhibitory action this activity did not follow the anti-inflammatory results, indicating the implication of other mechanisms.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2492 ◽  
Author(s):  
Urszula Złotek ◽  
Anna Jakubczyk ◽  
Kamila Rybczyńska-Tkaczyk ◽  
Paula Ćwiek ◽  
Barbara Baraniak ◽  
...  

The aim of this study was to determine the cytotoxic properties, influence on enzyme activity involved in metabolic syndrome, and antimicrobial activity of synthetic peptides with GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT sequences. Peptides have no cytotoxic effect on cells. The highest inhibitory effect on angiotensin converting enzyme I was noted for peptide GT-14 (IC50 = 525.63 µg/mL). None of the tested peptides had an influence on α-glucosidase. The highest α-amylase and lipase inhibitory activity was noted for GG-12 (IC50 = 56.72 and 60.62 µg/mL, respectively). The highest lipoxidase inhibitory activity was determined for peptide ER-13 (IC50 = 84.35 µg/mL). Peptide RQ-9 was characterized by the highest COX inhibitory activity (0.31 and 4.77 µg/mL for COX-1 and COX-2, respectively). Only peptide RQ-9 inhibited S. enteritidis ATCC 4931 growth (42–48%) in all tested concentrations (15.62–250 mg/mL).


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 438
Author(s):  
Mostafa Alilou ◽  
Stefania Marzocco ◽  
Hossein Batooli ◽  
Jakob Troppmair ◽  
Stefan Schwaiger ◽  
...  

The genus Dionysia, belonging to the Primulaceae family, encompasses more than 50 species worldwide with a center of diversity located in the arid Irano-Turanian mountains. In this study, a phytochemical investigation of the aerial parts of D. diapensifolia Bioss. led to the isolation of 24 phenolic compounds 1–7 and 9–25, and one sesquiterpenoid 8. Compound 1 was identified as new natural product, while isolation of 2 and 3, already known as synthetic products, from a natural source is reported for the first time in the present study. Isolation of compound 8 from a Dionysia species and indeed the whole Primulaceae family is reported for the first time too. Structure elucidation was performed by extensive spectroscopic analyses (1D-, 2D-NMR, and MS), and by comparison with reported literature data. Furthermore, DP4+ chemical shift probability calculations were performed to establish the relative configuration of compound 1. Additionally, subfractions obtained by liquid-liquid extraction of the methanolic extract of the plant, and subsequently the isolated new and selected known compounds 1–4, 6, 8–11 obtained from the diethyl ether subfraction were investigated for their inhibitory effect on NO release and iNOS and COX-2 expression in J774A.1 murine macrophages. The results showed a potential anti-inflammatory activity of the obtained subfractions, of which the diethyl ether subfraction was the most active one in inhibiting NO release and COX-2 expression (p < 0.001). Among the investigated isolated compounds, compound 4 significantly (p < 0.001) inhibited NO release and iNOS and COX-2 expression in a comparable manner like the used positive controls (L-NAME and indomethacin, respectively). Moreover, other isolated substances displayed moderate to high inhibitory activities, illustrating the potential anti-inflammatory activity of Dionysia diapensifolia.


2013 ◽  
Vol 8 (11) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Anna Macková ◽  
Pavel Mučaji ◽  
Ute Widowitz ◽  
Rudolf Bauer

Interest in the anti-inflammatory effects of Ligustrum vulgare L., which has been used traditionally in China and Japan prompted us to determine anti-inflammatory effects of the plant's compounds in leukocytes. The leaves of L. vulgare were used to prepare a decoction which was successively extracted with organic solvents (dichloromethane (DCM), n-butanol, ethyl acetate) using liquid-liquid partition. Extracts were tested for inhibition of LTB4, resp. PGE2 biosynthesis. Each extract was evaluated for its in vitro cyclooxygenase-1/2 (COX-1/2) inhibitory activity using assays with purified COX-1 and COX-2 enzymes, as well as for their LTB4 formation inhibitory activity using an assay with activated human neutrophil granulocytes. All extracts reported inhibitory actions against COXs in comparison with the synthetic inhibitors NS-398 (IC50 = 2.6 μM) and indomethacin (IC50 = 0.9 μM). The dichloromethane extract of privet leaves showed a considerable inhibitory effect against COX-1 and COX-2 enzyme activity. The DCM extract revealed 2.7 times higher inhibitory activity against LTB4 formation in comparison with the known specific LT inhibitor zileuton (IC50 = 5.0 μM). Additionally, oleuropein and echinacoside were detected by HPLC-DAD and LC-MS in the Ligustrum vulgare leaves. Both compounds exhibited weak inhibitory activity on cyclooxygenases and leukotriene formation.


Sign in / Sign up

Export Citation Format

Share Document