scholarly journals New Gallotannin and other Phytochemicals from Sycamore Maple (Acer pseudoplatanus) Leaves

2015 ◽  
Vol 10 (11) ◽  
pp. 1934578X1501001 ◽  
Author(s):  
Lu Zhang ◽  
Zong-Cai Tu ◽  
Tao Yuan ◽  
Hang Ma ◽  
Daniel B. Niesen ◽  
...  

The maple (Acer) genus is a reported source of bioactive (poly)phenols, including gallotannins, but several of its members, such as the sycamore maple (A. pseudoplatanus). remain uninvestigated. Herein, thirty-nine compounds, including a new gallotannin, 1,2,3-tri- O-galloyl-6- O-( p-hydroxybenzoyl)-β-D-glucopyranoside (1), and thirty-eight (2-39) known compounds, consisting of four gallotannins, one ellagitannin, thirteen flavonoids, eight hydroxycinnamic acids, ten benzoic acid derivatives, and two sesquiterpenoids, were isolated from sycamore maple leaves. Their structures were determined based on NMR and mass spectral analyses. The isolates were evaluated for α-glucosidase inhibitory and antioxidant activities. Among the isolates, the gallotannins were the most potent α-glucosidase inhibitors with thirteen-fold more potent activity compared with the clinical drug, acarbose (IC50 = 16–31 vs. 218 μM). Similarly, the gallotannins showed the highest antioxidant activities, followed by the other phenolic sub-classes, while the sesquiterpenoids were inactive.

RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17611-17621
Author(s):  
Yanfei Liu ◽  
Shuo Long ◽  
Shanshan Zhang ◽  
Yifu Tan ◽  
Ting Wang ◽  
...  

Although berberine (BBR) shows antioxidant activity, its activity is limited.


2011 ◽  
Vol 32 (12) ◽  
pp. 4411-4414 ◽  
Author(s):  
Ho-Sik Rho ◽  
Chang-Seok Lee ◽  
Soo-Mi Ahn ◽  
Yong-Deog Hong ◽  
Song-Seok Shin ◽  
...  

1997 ◽  
Vol 77 (4) ◽  
pp. 577-592 ◽  
Author(s):  
J. H. Pagella ◽  
X. B. Chen ◽  
N. A. Macleod ◽  
E. R. Ørskov ◽  
P. J. S. Dewey

The quantitative relationship between the urinary excretion of benzoic acid (BA)and the uptake of 3-phenylpropionic (PPA) and cyclohexanecarboxylic (CHCA) acids was assessed.PPA and CHCA are produced in the rumen by microbial fermentation of lignocellulosic feeds and metabolized, after absorption, to BA which is excreted in the urine mainly as its glycine conjugate hippuric acid (HA). Four sheep nourished by intragastric infusions of all nutrients weregiven continuous ruminal infusions of PPA (8,16 or 24 mmol/d) either alone or with CHCA (8 or 16 mmol/d) in a factorial experiment. The treatments were allocated to ten consecutive 6 d periods, with a control being repeated at periods 1, 5 and 10. PPA and CHCA ruminal absorption rates, estimated using the liquid-phase marker Cr-EDTA, were 0·78 (SD 0·29)/h and 0·88 (SD 0·28)/h respectively. For the control, HA excretion was only 0·22 (SD 0·33) mmol/d and free BA was absent. For the other treatments, both HA and free BA were present and HA accounted for 0·85 (SD 0·05) of total BA. The urinary excretion of total BA showed a significant linear correlation (r = 0·997, P<0·001) with the amounts of PPA and CHCA infused. The urinary recovery of infused PPA and CHCA as total BA was 0·79 (SE 0·01). Faecal excretion of BA and its precursors was negligible. Results of this study show that urinary total BA is a potential estimator of the absorption of PPA + CHCA produced in the rumen


2019 ◽  
Author(s):  
K Georgousaki ◽  
N Tsafantakis ◽  
S Gumeni ◽  
V González-Menéndez ◽  
G Lambrinidis ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 186-195 ◽  
Author(s):  
Samridhi Thakral ◽  
Vikramjeet Singh

Background: Postprandial hyperglycemia can be reduced by inhibiting major carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase which is an effective approach in both preventing and treating diabetes. Objective: The aim of this study was to synthesize a series of 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl] benzoic acid derivatives and evaluate α-glucosidase and α-amylase inhibitory activity along with molecular docking and in silico ADMET property analysis. Method: Chlorosulfonation of 2,4-dichloro benzoic acid followed by reaction with corresponding anilines/amines yielded 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic acid derivatives. For evaluating their antidiabetic potential α-glucosidase and α-amylase inhibitory assays were carried out. In silico molecular docking studies of these compounds were performed with respect to these enzymes and a computational study was also carried out to predict the drug-likeness and ADMET properties of the title compounds. Results: Compound 3c (2,4-dichloro-5-[(2-nitrophenyl)sulfamoyl]benzoic acid) was found to be highly active having 3 fold inhibitory potential against α-amylase and 5 times inhibitory activity against α-glucosidase in comparison to standard drug acarbose. Conclusion: Most of the synthesized compounds were highly potent or equipotent to standard drug acarbose for inhibitory potential against α-glucosidase and α-amylase enzyme and hence this may indicate their antidiabetic activity. The docking study revealed that these compounds interact with active site of enzyme through hydrogen bonding and different pi interactions.


2010 ◽  
Vol 9 (4) ◽  
pp. 198-204 ◽  
Author(s):  
Sadagopan Magesh ◽  
Nongluk Sriwilaijaroen ◽  
Vats Savita ◽  
Hiromune Ando ◽  
Taeko Miyagi ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miao Guo ◽  
Xiangtao Kong ◽  
Chunzhi Li ◽  
Qihua Yang

AbstractHydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) has important industrial and academic significance, however, the electron deficient aromatic ring and catalyst poisoning by carboxyl groups make BA hydrogenation a challenging transformation. Herein, we report that Pt/TiO2 is very effective for BA hydrogenation with, to our knowledge, a record TOF of 4490 h−1 at 80 °C and 50 bar H2, one order higher than previously reported results. Pt/TiO2 catalysts with electron-deficient and electron-enriched Pt sites are obtained by modifying the electron transfer direction between Pt and TiO2. Electron-deficient Pt sites interact with BA more strongly than electron-rich Pt sites, helping the dissociated H of the carboxyl group to participate in BA hydrogenation, thus enhancing its activity. The wide substrate scope, including bi- and tri-benzoic acids, further demonstrates the high efficiency of Pt/TiO2 for hydrogenation of BA derivatives.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3256
Author(s):  
Luis C. Chitiva-Chitiva ◽  
Cristóbal Ladino-Vargas ◽  
Luis E. Cuca-Suárez ◽  
Juliet A. Prieto-Rodríguez ◽  
Oscar J. Patiño-Ladino

In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1–3), one dihydrochalcone (4) and a mixture of sterols (5–7). Seven derivatives (8–14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure–activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced.


Sign in / Sign up

Export Citation Format

Share Document