scholarly journals Analysis of Active Metabolites of Sophora flavescens for Indoleamine 2,3-dioxygenase and Monoamine Oxidases using Ultra-Performance Liquid Chromatography-Quadrupole time-of-Flight Mass Spectrometry

2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Mi Hyeon Park ◽  
Seong Mi Lee ◽  
Sung-Kyun Ko ◽  
Kyeong Yeol Oh ◽  
Jung-Hee Kim ◽  
...  

As part of ongoing research on natural products derived from medicinal plants for enzyme inhibition, known dibenzoyl derivatives (1–3, 11 and 20), pterocarpans (4, 15 and 19), flavanones (5, 7, 10, 12–14, 18, 21–24, 26, 27, 29, 31–33, 35, 36, and 38–46), flavones (6, 16, 28, 30 and 37), isoflavones (8 and 17), furocoumarins (9), and chalcones (25 and 34) have been tentatively identified within fractions of Sophora flavescens roots (SFR) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTof-MS) technique. The extract and column fractions inhibited indoleamine 2,3-dioxygenase (IDO) and monoamine oxidases (MAOs) differently depending on the metabolite groups. The majority of rich fractions were shown to have residual activities of 49–59% at 10 μg/mL (IDO) and 11.7–34.9% at 50 μg/mL (MAOs) or below. In the total ion current (TIC) chromatogram, significant markers for the metabolites of the bioactive-guided fractions were identified; pterocarpans (4, 15 and 19), flavanones (5, 10, 12–14, 18, 21–23, 26, 29 31–33, 35, 36, and 38–46), isoflavones (8 and 17), furocoumarins (9), dibenzoyl derivatives (11 and 20), flavones (16, 28, 30 and 37), and chalcones (25 and 34) were evaluated among forty-six analyzed metabolites. Possible bioactive markers could be deduced using a data library and previous references, and information regarding spectroscopic characterization and optimal target metabolites was obtained.

Sign in / Sign up

Export Citation Format

Share Document