scholarly journals IDENTIFICATION OF PEROXISOMES IN THE RAT ADRENAL CORTEX

1972 ◽  
Vol 20 (3) ◽  
pp. 173-179 ◽  
Author(s):  
MARGARET E. BEARD

Organelles with the ultrastructure and cytochemical characteristics of peroxisomes (microbodies) have been identified in cells of the zona fasciculata and zona reticularis of the rat adrenal cortex. These peroxisomes appear as small, elliptical to spherical or branched structures, enclosed by a single membrane and composed of a moderately electron-dense matrix. They do not possess a nucleoid or core of the type found in peroxisomes of liver and kidney. These organelles show a strongly positive staining reaction with the diaminobenzidine technique for peroxidatic activity of catalase. This staining is inhibited by aminotriazole. In cytochemical preparations revealing acid phosphatase activity, lysosomes are strongly stained and peroxisomes are free of reaction product.

1977 ◽  
Vol 25 (5) ◽  
pp. 319-328 ◽  
Author(s):  
E Dannen ◽  
M E Beard

Organelles with the morphologic characteristics of peroxisomes have been found in the cells of the kidney sac of two terrestrial pulmonate gastropods. Arion ater and Ariolimax columbianus. These peroxisomes appear in profile as circles or ellipses, 0.25 micron in diameter and 0.3-0.8 micron long; They have a finely granular matrix and a single-limiting membrane; the organelles are extensively associated with smooth endoplasmic reticulum. Some Ariolimax peroxisomes contained structures reminiscent of nucleoids while those of Arion did not. The peroxisomes of Arion ater show a strongly-positive staining reaction with the 3,3'-diaminobenzidine technique, which is inhibited in the presence of aminotriazole. Peroxisomes of Ariolimax columbianus did not show a positive reaction, despite a number of variations of the 3,3'-diaminobenzidine protocol. Speculations are made concerning the biochemical reasons for this cytochemical behavior. Peroxisomes in both tissues were negatively stained while lysosomes were positively stained in acid-phosphatase incubations.


1979 ◽  
Vol 83 (3) ◽  
pp. 435-447 ◽  
Author(s):  
J. B. G. BELL ◽  
R. P. GOULD ◽  
P. J. HYATT ◽  
J. F. TAIT ◽  
S. A. S. TAIT

The outputs of corticosterone, deoxycorticosterone and androstenedione from dispersed, purified rat adrenal zona reticularis and zona fasciculata cells have been measured by radioimmunoassay. Preferential production of deoxycorticosterone by zona reticularis cells was demonstrated by their higher basal deoxycorticosterone: corticosterone ratio when compared with zona fasciculata cells. Adrenocorticotrophin (ACTH) stimulated corticosterone output by all cell pools prepared by unit gravity (1 g) sedimentation, zona fasciculata cells being stimulated 130-fold compared with 20-fold for the zona reticularis cells in relation to their basal corticosterone output. In every cell pool, ACTH stimulated the output of corticosterone more than it stimulated the output of deoxycorticosterone. In parallel cell preparations, it was shown that ACTH increased the conversion of tracer amounts of radioactive deoxycorticosterone to corticosterone and decreased the conversion of radioactive corticosterone to 11-dehydrocorticosterone. Adrenocorticotrophin did not increase the conversion of radioactive deoxycorticosterone to total 11-oxygenated steroids (corticosterone+ 11-dehydrocorticosterone). It is unlikely therefore that ACTH stimulates 11 β-hydroxylation. Data indicate that the ratio of deoxycorticosterone to total 11-oxygenated steroids (corticosterone +11-dehydrocorticosterone) is characteristic for each cell type, and that this ratio will be relatively independent of ACTH stimulation or the amount of pregnenolone substrate available. Basal androstenedione outputs were similar for both types of cell, and ACTH stimulation was very small, being slightly greater for zona fasciculata than for zona reticularis cells. The contribution of the zona reticularis cells to the basal output of any steroid by the cells of the inner two zones of the adrenal cortex of the rat was relatively small (20% for deoxycorticosterone and 10% for corticosterone) and was even less after stimulation by ACTH. Unless a specific stimulus can be found, therefore, a significant role for the zona reticularis cannot yet be established.


1973 ◽  
Vol 21 (1) ◽  
pp. 34-41 ◽  
Author(s):  
ELENA CITKOWITZ ◽  
ERIC HOLTZMAN

Bodies with the morphologic and cytochemical characteristics of peroxisomes have been identified in the satellite and Schwann cells of rat dorsal root ganglia. They are membrane-delimited, round or oval structures which contain a moderately electron-dense matrix but lack a crystalline core. On incubation of the tissue in a cytochemical medium for demonstration of peroxisomes, these bodies show heavy deposits of reaction product. The reaction is inhibited by heating the tissue or by incubation in the presence of aminotriazole or dichlorophenolindophenol. In tissue incubated for acid phosphatase activity the bodies are not reactive, although lysosomes show reaction product.


1988 ◽  
Vol 7 (1) ◽  
pp. 45-69 ◽  
Author(s):  
H. D. Colby

Among the endocrine organs, the adrenal cortex appears to be the most vulnerable to chemically induced injury. A wide variety of chemicals has been found to cause morphological or functional lesions in the gland. Some of the lesions are highly localized to specific anatomical zones of the adrenal cortex, and the resulting functional deficits depend on the physiological role(s) of the zone affected. In addition, metabolic activation is an important factor contributing to the gland's vulnerability to chemical injury. For example, carbon tetrachloride (CCl4) causes adrenocortical necrosis, but only of the innermost zone of the gland, the zona reticularis. The apparent reason for the localized effect of CCl4 in the adrenal cortex is that only the cells of the zona reticularis have the enzymatic capacity to activate CCl4, resulting in lipid peroxidation and covalent binding to cellular macromolecules. By contrast, the mineralocorticoid antagonist, spironolactone, causes functional lesions in the adrenal cortex that are limited to the middle zone of the gland, the zona fasciculata. The explanation again involves metabolic activation; only the zona fasciculata converts spironolactone to a highly reactive metabolite that effects the destruction of several enzymes that are required for steroid hormone synthesis. These findings indicate that bioactivation plays a critical role in the mechanism(s) of action of various toxic agents on the adrenal cortex and also may be responsible for the anatomically localized effects of many chemicals.


1965 ◽  
Vol 13 (6) ◽  
pp. 476-483 ◽  
Author(s):  
DAVID T. JANIGAN

The effect of various aldehydes on phosphatase(s) of rat liver and kidney hydrolyzing the monophosphates of β-glycerol, phenol, p-nitrophenol and naphthol AS-TR at pH 5.0 was determined. Biochemical data were correlated with histochemical staining results. On the basis of enzyme recovery after fixation, the aldehydes could be divided into 3 broad groups: (1) well over 50 per cent after hydroxyadipaldehyde and glyoxal; (2) near 50 per cent after formaldehyde and methacrolein; and (3) well below 50 per cent after crotonaldehyde, glutaraldehyde, and acrolein. Acid phosphatase(s) hydrolyzing all 4 substrates showed a similar differential response to fixation by 4 aldehydes, but individual recovery values with naphthol AS-TR phosphate were distinctly lower. Tissues immersed in the first aldehyde group were soft, showed poor morphologic preservation, and a large percentage of the activity was in a soluble state; these features were reflected in the histochemical demonstration of acid phosphatase by an intense staining reaction which was judged to be unsatisfactory. The reverse held true for tissues fixed in aldehydes of the third group, using glutaraldehyde in the staining tests Evidence is presented suggesting that acid phosphatase staining results after formaldehyde fixation is dependent in part on the duration of fixation.


1968 ◽  
Vol 41 (3) ◽  
pp. 319-326 ◽  
Author(s):  
E. H. D. CAMERON ◽  
M. A. BEYNON ◽  
K. GRIFFITHS

SUMMARY The ability of cells from the zona fasciculata and the zona reticularis of the human adrenal cortex to transform labelled pregnenolone and progesterone to cortisol in vitro was investigated. Examination of the 3H:14C ratios of 16α-hydroxyprogesterone, 17α-hydroxyprogesterone, 11-deoxycorticosterone and cortisol formed during incubations in vitro suggested that the role of progesterone in the transformation of pregnenolone to cortisol might be a relatively minor one. An attempt was subsequently made to estimate the relative importance of the biosynthetic pathway to cortisol by way of progesterone in hyperplastic adrenal tissue by a mathematical approach.


2005 ◽  
Vol 184 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Weiye Wang ◽  
Lishan Wang ◽  
Akira Endoh ◽  
Geoffrey Hummelke ◽  
Christina L Hawks ◽  
...  

In order to establish whether there are differences in DNA-binding proteins between zona fasciculata (ZF) and zona reticularis (ZR) cells of the human adrenal cortex, we prepared nuclear extracts from separated ZF and ZR cells. The formation of DNA–protein complexes was studied using an element in the first intron of the type I and type II 3β-hydroxysteroid dehydrogenase genes (HSD3B1 and HSD3B2). Using the element in the HSD3B2 gene as a probe, a complex (C1) was formed with extracts from ZF cells but was formed only at a low level with ZR cell extracts. Another pair of complexes (C2/C3) was formed with both ZF and ZR cell extracts. The ZF-specific protein forming C1 was enriched by column chromatography on DEAE-Sepharose and carboxymethyl-Sepharose. Oligonucleotide competition analysis on the enriched fraction gave results consistent with those obtained on the unfractionated material. A further enrichment was brought about by passing the protein over an oligonucleotide affinity column based on the HSD3B2 element. The protein bound to the column was identified as α-enolase by mass spectrometry. Although α-enolase is a glycolytic enzyme, it binds to specific DNA sequences and has been found to be present in nuclei of various cell types. We performed immunohistochemistry on sections of adult human adrenal cortex and found α-enolase to be located in nuclei of ZF cells but to be predominantly cytoplasmic in ZR cells. Transfection of an α-enolase expression vector into NCI-H295R human adrenocortical cells increased HSD3B2 promoter activity, suggesting a possible functional role for this protein in regulation of HSD3B2 expression.


1973 ◽  
Vol 57 (2) ◽  
pp. 345-359 ◽  
Author(s):  
Virginia H. Black ◽  
Bruce I. Bogart

Abundant membrane-bounded granules, 0.1–0.45 µm in diameter, occur among the elements of the smooth-surfaced endoplasmic reticulum in zona fasciculata and zona reticularis adrenocortical cells of guinea pigs. Acid phosphatase cannot be cytochemically demonstrated in them, and they are therefore distinct from lysosomes. Incubation in medium containing 3,3'-diaminobenzidine results in dense staining of the granules, identifying them as peroxisomes. These small peroxisomes increase in number as fetal adrenocortical cells differentiate, and they appear to arise from dilated regions of endoplasmic reticulum. They maintain interconnections with the smooth endoplasmic reticulum and with one another.


Sign in / Sign up

Export Citation Format

Share Document