scholarly journals Differences in glucose level between right arm and left arm using continuous glucose monitors

2020 ◽  
Vol 6 ◽  
pp. 205520762097034
Author(s):  
Nicole Kim ◽  
Kevin Pham ◽  
Allen Shek ◽  
Jeremy Lim ◽  
Xiaohan Liu ◽  
...  

Background Continuous glucose monitoring (CGM) measures interstitial glucose levels through a sensor with a thin filament inserted under the skin. It is customary for patients to rotate sensor application sites between arms to minimize skin irritation. However, there is limited data regarding the degree of inter-arm differences with CGM technology. Methods Self-proclaimed right-handed (n = 5) and left-handed (n = 5) participants, regardless of concurrent comorbidities, were enrolled for CGM. Participants wore a FreeStyle Libre Pro sensor on each arm for a maximum of 14 days. Muscle mass and body fat analysis was conducted using a multi-frequency segmental body composition analyzer. Glucose levels from both arms were time-matched with the first 12 hours eliminated from analysis. Mean glucose and time in target range were compared between readings from the right and left arm. Results A total of 9830 paired glucose levels were included for analysis. In all participants (n = 10), mean glucose on the right arm was 89.1 mg/dL (SD, 19.9) and 85.3 mg/dL (SD, 19.3) on the left arm (P < 0.001). Glucose was out of target range (70-180 mg/dL) for 12.7% of the time in the right arm compared to 18.5% in the left arm (P < 0.001). Conclusions In a group of 10 nondiabetic and diabetic adults, there was a statistically significant difference in CGM readings between the right and left arms. Time in target range may differ based on arm selection when using a CGM. Arm dominance did not explain the inter-arm glucose level discordance.

2021 ◽  
Vol 8 (16) ◽  
pp. 1-142
Author(s):  
Kathryn Beardsall ◽  
Lynn Thomson ◽  
Catherine Guy ◽  
Simon Bond ◽  
Annabel Allison ◽  
...  

Background Hyperglycaemia and hypoglycaemia are common in preterm infants and are associated with increased mortality and morbidity. Continuous glucose monitoring is widely used to target glucose control in adults and children, but not in neonates. Objective To evaluate the role of continuous glucose monitoring in the preterm infant. Design The REAl-time Continuous glucose moniToring in neonatal intensive care project combined (1) a feasibility study, (2) a multicentre randomised controlled trial and (3) a pilot of ‘closed-loop’ continuous glucose monitoring. The feasibility study comprised a single-centre study (n = 20). Eligibility criteria included a birthweight ≤ 1200 g and aged ≤ 48 hours. Continuous glucose monitoring was initiated to support glucose control. The efficacy and safety outcomes guided the design of the randomised controlled trial. The randomised controlled trial comprised a European multicentre trial (n = 182). Eligibility criteria included birthweight ≤ 1200 g and aged ≤ 24 hours. Exclusion criteria included any lethal congenital abnormality. Continuous glucose monitoring was initiated to support glucose control within 24 hours of birth. In the intervention group, the continuous glucose monitoring sensor provided real-time data on glucose levels, which guided clinical management. In control infants, the continuous glucose monitoring data were masked, and glucose level was managed in accordance with standard clinical practice and based on the blood glucose levels. The primary outcome measure was the percentage of time during which the sensor glucose level was within the target range of 2.6–10 mmol/l. Secondary outcome measures included mean sensor glucose level, the percentage of time during which the sensor glucose level was within the target range of 4–8 mmol/l, the percentage of time during which the sensor glucose level was in the hyperglycaemic range (i.e. > 15 mmol/l) and sensor glucose level variability. Safety outcomes included hypoglycaemia exposure. Acceptability assessment and health economic analyses were carried out and further exploratory health outcomes were explored. The mean percentage of time in glucose target range of 2.6–10 mmol/l was 9% higher in infants in the continuous glucose monitoring group (95% confidence interval 3% to 14%; p = 0.002), and the mean time in the target range of 4–8 mmol/l was 12% higher in this group (95% confidence interval 4% to 19%; p = 0.004). There was no difference in the number of episodes of hypoglycaemia. Exploratory outcomes showed a reduced risk of necrotising enterocolitis in the intervention arm (odds ratio 0.33, 95% confidence interval 0.13 to 0.78; p = 0.01). Health economic analyses demonstrated that continuous glucose monitoring was cost-effective on the basis of the cost per additional case of adequate glucose control between 2.6 and 10 mmol/l. The ‘closed-loop’ study was a single-center pilot study, with eligibility criteria including a birthweight of ≤ 1200 g and aged ≤ 48 hours. Infants underwent continuous glucose monitoring for the first week of life (n = 21), with those in the intervention group receiving closed-loop insulin delivery between 48 and 72 hours of age. The primary outcome of percentage of time in the target range (i.e. sensor glucose 4–8 mmol/l) increased from a median of 26% (interquartile range 6–64%) to 91% (interquartile range 78–99%) during closed-loop insulin delivery (p < 0.001). Limitations These studies have not defined the optimal targets for glucose control or the best strategies to achieve them in these infants. Future work Studies are needed to evaluate the longer-term impact of targeting glucose control on clinical outcomes. Conclusions Continuous glucose monitoring in extremely preterm infants can improve glucose control, with closed-loop insulin delivery having further potential to target glucose levels. Staff and parents felt that the use of continuous glucose monitoring improved care and the results of the health economic evaluation favours the use of continuous glucose monitoring. Trial registration Current Controlled Trials ISRCTN12793535. Funding This project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a MRC and National Institute for Health Research (NIHR) partnership. This will be published in full in Efficacy and Mechanism Evaluation; Vol. 8, No. 16. See the NIHR Journals Library website for further project information. Medtronic plc provided some MiniMed™ 640G systems and Nova Biomedical (Waltham, MA, USA) provided point-of-care devices.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
J. M. Milln ◽  
E. Walugembe ◽  
S. Ssentayi ◽  
H. Nkabura ◽  
A. G. Jones ◽  
...  

Abstract Background The diagnosis of hyperglycaemia in sub-Saharan Africa (SSA) is challenging. Blood glucose levels obtained during oral glucose tolerance test (OGTT) may not reflect home glycaemic profiles. We compare OGTT results with home glycaemic profiles obtained using the FreeStyle Libre continuous glucose monitoring device (FSL-CGM). Methods Twenty-eight women (20 with gestational diabetes [GDM], 8 controls) were recruited following OGTT between 24 and 28 weeks of gestation. All women wore the FSL-CGM device for 48–96 h at home in early third trimester, and recorded a meal diary. OGTT was repeated on the final day of FSL-CGM recording. OGTT results were compared with ambulatory glycaemic variables, and repeat OGTT was undertaken whilst wearing FSL-CGM to determine accuracy of the device. Results FSL-CGM results were available for 27/28 women with mean data capture 92.8%. There were significant differences in the ambulatory fasting, post-prandial peaks, and mean glucose between controls in whom both primary and secondary OGTT was normal (n = 6) and those with two abnormal OGTTs or “true” GDM (n = 7). There was no difference in ambulatory mean glucose between these controls and the 13 women who had an abnormal primary OGTT and normal repeat OGTT. These participants had significantly lower body mass index (BMI) than the true GDM group (29.0 Vs 36.3 kg/m2, p-value 0.014). Paired OGTT/FSL-CGM readings revealed a Mean Absolute difference (MAD) -0.58 mmol/L and Mean Absolute Relative Difference (MARD) -11.9%. Bland-Altman plot suggests FSL-CGM underestimated blood glucose by approximately 0.78 mmol/L. Conclusion Diagnosis of GDM on a single OGTT identifies a proportion of women who do not have a significantly higher home glucose levels than controls. This raises questions about factors which may affect the reproducibility of OGTT in this population, including food insecurity and atypical phenotypes of diabetes. More investigation is needed to understand the suitability of the OGTT as a diagnostic test in sub-Saharan Africa.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Marcio Krakauer ◽  
Jose Fernando Botero ◽  
Fernando J. Lavalle-González ◽  
Adrian Proietti ◽  
Douglas Eugenio Barbieri

Abstract Background Continuous glucose monitoring systems are increasingly being adopted as an alternative to self-monitoring of blood glucose (SMBG) by persons with diabetes mellitus receiving insulin therapy. Main body The FreeStyle Libre flash glucose monitoring system (Abbott Diabetes Care, Witney, United Kingdom) consists of a factory-calibrated sensor worn on the back of the arm which measures glucose levels in the interstitial fluid every minute and stores the reading automatically every 15 min. Swiping the reader device over the sensor retrieves stored data and displays current interstitial glucose levels, a glucose trend arrow, and a graph of glucose readings over the preceding 8 h. In patients with type 2 diabetes (T2D) receiving insulin therapy, pivotal efficacy data were provided by the 6-month REPLACE randomized controlled trial (RCT) and 6-month extension study. Compared to SMBG, the flash system significantly reduced the time spent in hypoglycemia and frequency of hypoglycemic events, although no significant change was observed in glycosylated hemoglobin (HbA1c) levels. Subsequent RCTs and real-world chart review studies have since shown that flash glucose monitoring significantly reduces HbA1c from baseline. Real-world studies in both type 1 diabetes or T2D populations also showed that flash glucose monitoring improved glycemic control. Higher (versus lower) scanning frequency was associated with significantly greater reductions in HbA1c and significant improvements in other measures such as time spent in hypoglycemia, time spent in hyperglycemia, and time in range. Additional benefits associated with flash glucose monitoring versus SMBG include reductions in acute diabetes events, all-cause hospitalizations and hospitalized ketoacidosis episodes; improved well-being and decreased disease burden; and greater treatment satisfaction. Conclusion T2D patients who use flash glucose monitoring might expect to achieve significant improvement in HbA1c and glycemic parameters and several associated benefits.


2020 ◽  
Author(s):  
Lei Zhang ◽  
Yaqiong Ran ◽  
Yan Zhu ◽  
Qianna Zhen

Abstract Objective Sodium fluoride (NaF) has been applied to inhibit glycolysis in venous specimens for decades. However, it has had little effect on the rate of glycolysis in the first 1 to 2 hours, resulting in a decrease of glucose, so a more efficient method is needed. Recently, we discovered that WZB117, a specific Glut1 inhibitor, restricts glycolysis by inhibiting the passive sugar transport of human red blood cells and cancer cells. The purpose of this study was to evaluate the results of intravenous blood glucose determination after the addition of WZB117. Methods Venous specimens from 40 pairs of healthy volunteers were collected for several days and placed in tubes containing NaF plus EDTA-disodium (Na2) without WZB117 (the A group); citric acid, trisodium citrate, and EDTA-Na2 without WZB117 (B group); and NaF plus EDTA-Na2 with WZB117 (C group). The glucose concentration was measured after venipuncture and compared with test tubes treated for 1 hour, 2 hours, and 3 hours before centrifugation. Glucose level was determined by the hexokinase method. The paired t-test was used to examine differences in glucose values at baseline and at different time points. The number of misdiagnoses and the misdiagnosis rate were calculated at 2 diagnostic stages: high risk of diabetes (glucose level of 6.1 mmol/L) and diagnosis of diabetes (glucose level of 7.0 mmol/L). Results Glucose levels decreased by 1.0% at 1 hour and by 2.1% at 3 hours in the C group tubes and simultaneously decreased by 1.7% at 1 hour and by 2.5% at 3 hours in the B group tubes. In contrast, glucose levels decreased by 4.1% at 1 hour and by 6.3% at 3 hours in the A group tubes. There was a statistically significant difference in glucose levels measured in the A group tubes and B group tubes at 1 hour, 2 hours, and 3 hours. The misdiagnosis rate of clinical diagnosis in diabetes was highest in the A group tubes (7.0‰ at 1 hour, 0.1‰ at 3 hours at 7.0 mmol/L point; 14.6‰ at 1 hour, 0.4‰ at 3 hours at 6.1 mmol/L point) and lowest in the C group tubes (2.95‰ at 1 hour, 0‰ at 3 hours at 7.0 mmol/L point; 4.8‰ at 1 hour, 0.1‰ at 3 hours at 6.1 mmol/L point). Conclusion The tube addition of WZB117 is more suitable for minimizing glycolysis and has no effect on glucose levels even if specimens are left uncentrifuged for up to 3 hours.


Author(s):  
Aishwarya Pramod Benkar ◽  
Smita Bhimrao Kanase

Objective: Diabetes mellitus is a leading cause of death and disability in the world and its prevalence is predicted to rise to 10% by 2030. Hence, this study is conducted with objectives to find out the effect of aerobic exercises and resisted exercises on blood glucose levels in type 2 diabetes mellitus (T2DM) subjects and to compare the effect of both exercises on blood glucose level.Method: The comparative study was conducted at Krishna Institute of Medical Sciences Deemed University, Physiotherapy department, Karad. 30 participants with age group between 30 and 65 years were taken. Subjects were selected as per inclusion and exclusion criteria. Group A (15) participants were given aerobic exercise on static bicycle, and Group B (15) participants were given resistance training using dumbbells and weight cuffs for 5 days/week for 4 weeks. Diet recommendations were given to every participant.Results: Statistical analysis was performed using paired and unpaired t-test. Analysis showed statistically extremely significant difference in fasting blood glucose level and postprandial blood glucose level in both the groups (p≤0.0001).Conclusion: Thus, this study concludes that both aerobic exercises and resistance training prove to be beneficial in controlling blood glucose levels in T2DM subjects.


2020 ◽  
pp. 193229681990025 ◽  
Author(s):  
Oskar Kublin ◽  
Mariusz Stępień

Background: The FreeStyle Libre is a flash glucose monitoring (FGM) system, and glucose levels are measured when the reader is brought to the sensor. Additional readers allow for the conversion into a continuous glucose monitoring (CGM) system. These transmitters read data from the sensor and send them to a bluetooth-enabled device thanks to which the user acquires glucose measurements automatically. This modification allows the patient to receive alerts when blood glucose values are abnormal. Methods: The study relied on the results of an anonymous online survey conducted among patients with diabetes or their caregivers who use Facebook groups. A total of 132 respondents who met certain criteria (diabetic who use FGM system longer than 3 months, at least 14 days per month) were enrolled in the study. Results: A significant decrease in self-reported glycated hemoglobin levels was found in adults and children using readers (variable: age P = .008; time P < .001), regardless of the age. The use of additional readers was associated with a significant decrease in the number of self-reported episodes of hypoglycemia ( P < .001) and an improvement in the quality of life (based on self-reported limitations in everyday activities, social contacts, work/school, or doing sports). Conclusion: The use of additional readers for FGM system improves the metabolic control of diabetes and the quality of life, and has a positive effect on the safety of treatment. Flash glucose monitoring used together with additional readers operates as a CGM system and seems to be helpful for patients for the monitoring of interstitial levels of glucose; however, they should be careful when they use do it yourself solution.


2014 ◽  
Vol 60 (12) ◽  
pp. 1500-1509 ◽  
Author(s):  
Malgorzata E Wilinska ◽  
Roman Hovorka

Abstract BACKGROUND Accuracy and frequency of glucose measurement is essential to achieve safe and efficacious glucose control in the intensive care unit. Emerging continuous glucose monitors provide frequent measurements, trending information, and alarms. The objective of this study was to establish the level of accuracy of continuous glucose monitoring (CGM) associated with safe and efficacious glucose control in the intensive care unit. METHODS We evaluated 3 established glucose control protocols [Yale, University of Washington, and Normoglycemia in Intensive Care Evaluation and Surviving Using Glucose Algorithm Regulation (NICE-SUGAR)] by use of computer simulations. Insulin delivery was informed by intermittent blood glucose (BG) measurements or CGM levels with an increasing level of measurement error. Measures of glucose control included mean glucose, glucose variability, proportion of time glucose was in target range, and hypoglycemia episodes. RESULTS Apart from the Washington protocol, CGM with mean absolute relative deviation (MARD) ≤15% resulted in similar mean glucose as with the use of intermittent BG measurements. Glucose variability was also similar between CGM and BG-informed protocols. Frequency and duration of hypoglycemia were not worse by use of CGM with MARD ≤10%. Measures of glucose control varied more between protocols than at different levels of the CGM error. CONCLUSIONS The efficacy of CGM-informed and BG-informed commonly used glucose protocols is similar, but the risk of hypoglycemia may be reduced by use of CGM with MARD ≤10%. Protocol choice has greater influence on glucose control measures than the glucose measurement method.


2022 ◽  
Vol 8 (4) ◽  
pp. 267-269
Author(s):  
Abhijit Trailokya ◽  
Suhas Erande ◽  
Amol Aiwale

This study aimed to assess effectiveness of Evogliptin 5 mg through continues glucose monitoring (CGM) in patients with T2DM in retrospective observational real world settings. Overall 6 patients who received Evogliptin as routine clinical practice in management of T2DM were analyzed retrospectively from single center. Data collected from past medical records. FreeStyle Librepro 1.0.6 was used for CGM. CGM was done 15 days prior to adding Evogliptin and repeated immediately after that for next 15 days. Mean BG level, Percentage time in target range (80-140mg/dl), Percentage time above target and Percentage time below target were assessed prior and after adding Evogliptin in existing treatment regimen. Significant reduction in Mean blood glucose level seen after adding Evogliptin in existing treatment regimen from 215 mg/dl to 138 mg/dl (-77 mg/dl P=0.006). Significant improvement seen in Percentage time in target range (80-140mg/dl) from 17% to 44% (27% P value 0.007) and in Percentage time above target from 81% to 43% (- 38%, P valve 0.003). 13.5 % of the patients seen below target. Evogliptin was found to be effective when added to the patients who were uncontrolled on other oral anti-diabetic medications. It effectively showed improvement in continues glucose monitoring (CGM) parameters like Mean blood glucose, more number of patients were in Time in Target range i.e (80-140mg/dl) after adding Evogliptin to existing anti-diabetic medications & well tolerated. Small sample size and retrospective study


2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Shasha Cui ◽  
Xinqiang Liu ◽  
Dayan Zhang ◽  
Lu Zhang ◽  
Ying Wang

Background: In patients receiving anti-cancer chemotherapy, polyethylene glycolated recombinant human granulocyte-colony stimulating factor (PEG-rhG-CSF) was used for prophylaxis of chemotherapy-induced neutropenia. However, the side effect of PEG-rhG-CSF use on fasting blood glucose (FBG) level remains unclear. Materials and Methods: Cancer patients receiving chemotherapy and PEG-rhG-CSF were enrolled in our study. Baseline glucose (Glucose 1) was measured before PEG-rhG-CSF use, a second FBG test (Glucose 2) was performed after PEG-rhG-CSF use. Mean glucose levels were compared using t test. Results: The time interval between PEG-rhG-CSF use and the second glucose test was 2.4±1.5 days. The mean Glucose 1 was 5.18±0.53 mmol/L, and Glucose 2 was 3.80±1.13 mmol/L. Statistical analysis showed a significant difference between Glucose 1 and 2 existed (P<0.001). Conclusion: Our study identifies a hypoglycemic side effect of PEG-rhG-CSF occurs in cancer patients undergoing anti-cancer chemotherapy. Our results highlight the caution required when using PEG-rhG-CSF for prophylaxis of chemotherapy-induced neutropenia.


2019 ◽  
Vol 15 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Michael Müller-Korbsch ◽  
Lisa Frühwald ◽  
Michael Heer ◽  
Maria Fangmeyer-Binder ◽  
David Reinhart-Mikocki ◽  
...  

Background: Glucose control during consecutive days of aerobic exercise has not been well studied. We assessed glycemia, insulin requirements, and carbohydrate (CHO) needs during two consecutive days of prolonged cycling in type 1 diabetes (T1D) adults using sensor-augmented insulin pump therapy. Methods: Twenty adults with well-controlled T1D and six healthy adults (for comparison) were enrolled. Assessments were made during two consecutive days of cycling activities (30 miles per day). On day 1 (D1), basal rates were reduced 50% and CHO intake was guided by real-time continuous glucose monitoring (rtCGM) data to maintain a target range (70-180 mg/dL). On day 2 (D2), basal insulin infusion was stopped for the first hour of biking and resumed at a minimal rate during biking. Carbohydrate intake one hour before, during, and ten minutes after biking was recorded. Times within/below target range, glycemic variability, and mean glucose were calculated from rtCGM data. Results: Among 17 T1D participants who completed the study, mean glucose levels at the start of cycling were slightly lower on D2 vs D1: 138 ± 16 mg/dL and 122 ± 16, respectively, P = NS. Type 1 diabetes participants achieved near-normal glucose levels at the end of both cycling events; however, the reduction in glucose was most notable at one hour into the event on D2 vs D1. Carbohydrate intake was notably lower during D2 vs D1 with no difference in time <54 mg/dL (both P = NS). Conclusions: Type 1 diabetes individuals using rtCGM-augmented insulin pump therapy can safely engage in consecutive days of prolonged aerobic exercise by significantly reducing insulin dosages with no increase in CHO intake.


Sign in / Sign up

Export Citation Format

Share Document