Exploring Best Practices on Development Regulatory Affairs and Clinical Development Related to Multiregional Clinical Trials (MRCTs) in China, Korea, and Taiwan

2013 ◽  
Vol 47 (1) ◽  
pp. 133-139
Author(s):  
Tetsuomi Takano
2020 ◽  
Vol 21 (12) ◽  
pp. 1194-1200
Author(s):  
Claudio Campa

: This review focuses on 5 new anti-VEGF drugs in the advanced stage of clinical development (i.e., phase 3): conbercept, brolucizumab, port delivery system with ranibizumab, abicipar pegol and faricimab. : Results of clinical trials and the advantages of each drug compared to the available molecules are discussed in detail.


Author(s):  
Elizabeth A. Johnson ◽  
Jane M. Carrington

It is estimated 1 in 3 clinical trials utilize a wearable device to gather real-time participant data, including sleep habits, telemetry, and physical activity. While wearable technologies (including smart watches, USBs, and implantable devices) have been revolutionary in their ability to provide a higher precision and accuracy to data acquisition external to the research milieu, there is hesitancy among providers and participants alike given security concerns, perception of cyber-related threats, and meaning attributed to privacy issues. The purpose of this research is to define cyber-situational awareness (CSA) as it pertains to clinical trials, evaluate its current measurement, and describe best practices for research investigators and trial participants to enhance protections in the digital age. This paper reviews integrated elements of CSA within the process of informed consent when wearable devices are implemented for trial procedures. Evaluation of CSA as part of informed consent allows the research site to support the participant in knowledge gaps surrounding the technology while also providing feedback to the trial sponsor as to technology improvements to enhance usability and wearability of the device.


2021 ◽  
Vol 23 (9) ◽  
Author(s):  
Anthony Kong ◽  
Hisham Mehanna

Abstract Purpose of Review WEE1 inhibitor has been shown to potential chemotherapy or radiotherapy sensitivity in preclinical models, particularly in p53-mutated or deficient cancer cells although not exclusively. Here, we review the clinical development of WEE1 inhibitor in combination with chemotherapy or radiotherapy with concurrent chemotherapy as well as its combination with different novel agents. Recent Findings Although several clinical trials have shown that WEE1 inhibitor can be safely combined with different chemotherapy agents as well as radiotherapy with concurrent chemotherapy, its clinical development has been hampered by the higher rate of grade 3 toxicities when added to standard treatments. A few clinical trials had also been conducted to test WEE1 inhibitor using TP53 mutation as a predictive biomarker. However, TP53 mutation has not been shown to be the most reliable predictive biomarker and the benefit of adding WEE1 inhibitor to chemotherapy has been modest, even in TP53 biomarker-driven studies. Summary There are ongoing clinical trials testing WEE1 inhibitor with novel agents such as ATR and PAPR inhibitors as well as anti-PDL1 immunotherapy, which may better define the role of WEE1 inhibitor in the future if any of the novel treatment combination will show superior anti-tumor efficacy with a good safety profile compared to monotherapy and/or standard treatment.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sonam Gurung ◽  
Dany Perocheau ◽  
Loukia Touramanidou ◽  
Julien Baruteau

AbstractThe use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications.


Author(s):  
Diego Alejandro Dri ◽  
Maurizio Massella ◽  
Donatella Gramaglia ◽  
Carlotta Marianecci ◽  
Sandra Petraglia

: Machine Learning, a fast-growing technology, is an application of Artificial Intelligence that has significantly contributed to drug discovery and clinical development. In the last few years, the number of clinical applications based on Machine Learning has constantly been growing. Moreover, it is now also impacting National Competent Authorities during the assessment of most recently submitted Clinical Trials that are designed, managed, or generating data deriving from the use of Machine Learning or Artificial Intelligence technologies. We review current information available on the regulatory approach to Clinical Trials and Machine Learning. We also provide inputs for further reasoning and potential indications, including six actionable proposals for regulators to proactively drive the upcoming evolution of Clinical Trials within a strong regulatory framework, focusing on patient safety, health protection, and fostering immediate access to effective treatments.


US Neurology ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 47 ◽  
Author(s):  
Said R Beydoun ◽  
Jeffrey Rosenfeld

Edaravone significantly slows progression of amyotrophic lateral sclerosis (ALS), and is the first therapy to receive approval by the Food and Drug Administration (FDA) for the disease in 22 years. Approval of edaravone has marked a new chapter in pharmaceutical development since the key trial included a novel strategic clinical design involving cohort enrichment. In addition, approval was based on clinical trials that had a relatively small patient number and were performed outside of the US. Edaravone was developed through a series of clinical trials in Japan where it was determined that a well-defined subgroup of patients was required to reveal a treatment effect within the study period. Amyotrophic lateral sclerosis is associated with wide-ranging disease heterogeneity (both within the spectrum of ALS phenotypes as well as in the rate of progression). The patient cohort enrichment strategy aimed to address this heterogeneity and should now be considered as a viable, and perhaps preferred, trial design for future studies. Future research incorporating relevant biomarkers may help to better elucidate edaravone’s mechanism of action, pharmacodynamics, and subsequently ALS phenotypes that may preferentially benefit from treatment. In this review, we discuss the edaravone clinical development program, outline the strategic clinical trial design, and highlight important lessons for future trials.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Maureen G. Maguire

Clinical trials for conditions affecting the visual system need to not only conform to the guidelines for all clinical trials, but also accommodate the possibility of both eyes of a single patient qualifying for the trial. In this review, I present the interplay of the key components in the design of a clinical trial, along with the modifications or options that may be available for trials addressing ocular conditions. Examples drawn from published reports of the design and results of clinical trials of ocular conditions are provided to illustrate application of the design principles. Current approaches to data analysis and reporting of trials are outlined, and the oversight and regulatory procedures to protect participants in clinical trials are discussed. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2017 ◽  
Vol 1 (S1) ◽  
pp. 82-82
Author(s):  
Meghan Spiroff ◽  
Lisa Connally ◽  
Anita Johnson ◽  
Aalap Doshi ◽  
Patricia Piechowski

OBJECTIVES/SPECIFIC AIMS: Across the Clinical and Translational Science Award (CTSA) Consortium, participant recruitment into clinical trials is essential to advance science. Without proper participant recruitment, clinical trials do not result in gains in scientific knowledge, wastes time, funds, and other resources (Mahon et al., 2015). METHODS/STUDY POPULATION: Participant recruitment programs across the consortium are inconsistent in staffing, program services, and program goals. The participant recruitment program at the University of Michigan’s (U-M) Michigan Institute for Clinical & Health Research (MICHR) provides expertise, tools, and resources to facilitate participant recruitment in clinical and health research studies. RESULTS/ANTICIPATED RESULTS: We will explain our program infrastructure, staffing, services, and discuss how we maintain an engaged registry with over 27,000 participants interested in research studies at U-M. DISCUSSION/SIGNIFICANCE OF IMPACT: Proper recruitment into clinical trials results in findings that are relevant for genetic, cultural, linguistic, racial/ethnic, gender, and age differences (Cottler et al., 2013). We hope to share our best practices that aid in the development and success of participant recruitment across the CTSA Consortium.


Sign in / Sign up

Export Citation Format

Share Document