scholarly journals An Integrated Microfluidic SELEX Approach Using Combined Electrokinetic and Hydrodynamic Manipulation

2016 ◽  
Vol 22 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Timothy Olsen ◽  
Jing Zhu ◽  
Jinho Kim ◽  
Renjun Pei ◽  
Milan N. Stojanovic ◽  
...  

This article presents a microfluidic approach for the integration of the process of aptamer selection via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs bead-based biochemical reactions in which affinity-selected target-binding oligonucleotides are electrokinetically transferred for amplification, while the amplification product is transferred back for affinity selection via pressure-driven fluid flow. The hybrid approach simplifies the device design and operation procedures by reduced pressure-driven flow control requirements and avoids the potentially deleterious exposure of targets to electric fields prior to and during affinity selection. In addition, bead-based reactions are used to achieve the on-chip coupling of affinity selection and amplification of target-binding oligonucleotides, thereby realizing on-chip loop closure and integration of the entire SELEX process without requiring offline procedures. The microfluidic approach is thus capable of closed-loop, multiround aptamer enrichment as demonstrated by selection of DNA aptamers against the protein immunoglobulin E with high affinity ( KD = 12 nM) in a rapid manner (4 rounds in approximately 10 h).

2004 ◽  
Vol 76 (17) ◽  
pp. 5063-5068 ◽  
Author(s):  
David S. Reichmuth ◽  
Timothy J. Shepodd ◽  
Brian J. Kirby

2018 ◽  
Vol 838 ◽  
pp. 284-319 ◽  
Author(s):  
P. P. Sumets ◽  
J. E. Cater ◽  
D. S. Long ◽  
R. J. Clarke

We consider pressure-driven flow of an ion-carrying viscous Newtonian fluid through a non-uniformly shaped channel coated with a charged deformable porous layer, as a model for blood flow through microvessels that are lined with an endothelial glycocalyx layer (EGL). The EGL is negatively charged and electrically interacts with ions dissolved in the blood plasma. The focus here is on the interplay between electrochemical effects, and the pressure-driven flow through the microvessel. To analyse these effects we use triphasic mixture theory (TMT) which describes the coupled dynamics of the fluid phase, the elastic EGL, ion transport within the fluid and electric fields within the microvessel. The resulting equations are solved numerically using a coupled boundary–finite element method (BEM-FEM) scheme. However, in the physiological regime considered here, ion concentrations and electric potentials vary rapidly over a thin transitional region (Debye layer) that straddles the lumen–EGL interface, which is difficult to resolve numerically. Accordingly we analyse this region asymptotically, to determine effective jump conditions across the interface for BEM-FEM computations within the bulk EGL/lumen. Our results demonstrate that ion–EGL electrical interactions can influence the near-wall flow, causing it to become reversed. This alters the stresses exerted upon the vessel wall, which has implications for the hypothesised role of the EGL as a transmitter of mechanical signals from the blood flow to the endothelial vessel surface.


2016 ◽  
Vol 18 (3) ◽  
pp. 1886-1896 ◽  
Author(s):  
Bo Liu ◽  
Renbing Wu ◽  
Julia A. Baimova ◽  
Hong Wu ◽  
Adrian Wing-Keung Law ◽  
...  

Water molecules form layered structures inside graphene bilayers and ultra-high pressure-driven flow rates can be observed.


2013 ◽  
Vol 57 (4) ◽  
pp. 1121-1146 ◽  
Author(s):  
L. Rodríguez-Arco ◽  
P. Kuzhir ◽  
M. T. López-López ◽  
G. Bossis ◽  
J. D. G. Durán

Sign in / Sign up

Export Citation Format

Share Document