scholarly journals Fracture Immobilization in an Austere Environment: A Comparative Study of Military Special Operations Medical Personnel using a SAM Splint vs a One-Step Spray on Foam

2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0029
Author(s):  
Kevin D. Martin ◽  
Alicia Unangst ◽  
Jaime Chisholm

Category: Trauma Introduction/Purpose: Improved body-armor and mine resistant vehicles have improved battlefield survivability, but now nearly 50% of casualties have a musculoskeletal extremity injury. The purpose of the current study was to evaluate current SAM splint techniques utilized for a distal Tib/Fib fracture verse a new one-step spray on foam immobilization technique. Methods: A cadaveric model with a distal third combined tibia-fibula fracture was used for testing. The specimens were placed in an austere environment and participants immobilized the injury with standard equipment (SAM splint, 6in Ace wrap). The test group immobilized the injury with a one-step in-situ spray on foam splint. Results: Twenty-one military Joint Special Operations Command (JSOC) medical personnel (11 Medics, 4 PAs, 6 Physicians) participated with an average of 7.7 years as a provider and 25.4 months deployed in a combat theater. Each participant was observed and scored by a single orthopedic foot and ankle surgeon using a Likert scale based on 10 splinting criteria. Standard SAM splinting resulted in an average score of 32.2 (range, 5-50), with significant deficiencies in fracture traction (1/5), fracture motion (2.9/5), protection of neurovascular structures (3/5), and soft tissue manipulation (3/5). The average time to completion was (203 sec), with one splint failure. The spray on foam splinting technique yielded a significantly higher score of 48.5 while completing the task significantly faster at 68 sec with no failures. Conclusion: JSOC medical personnel demonstrated overwhelming success in immobilizing a complex extremity fracture with a SAM splint. Testing demonstrated the inherent inability of the SAM splint to provide longitudinal traction while simultaneously allowing excessive fracture motion and potential injury to the soft tissues. In addition, our spray-on foam proof of concept technique eliminated motion and provided traction by allowing in-situ application with adequate rigidity.

Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Toni Wendler ◽  
Torsten Prietzel ◽  
Robert Möbius ◽  
Jean-Pierre Fischer ◽  
Andreas Roth ◽  
...  

Abstract Background All current total hip arthroplasty (THA) systems are modular in design. Only during the operation femoral head and stem get connected by a Morse taper junction. The junction is realized by hammer blows from the surgeon. Decisive for the junction strength is the maximum force acting once in the direction of the neck axis, which is mainly influenced by the applied impulse and surrounding soft tissues. This leads to large differences in assembly forces between the surgeries. This study aimed to quantify the assembly forces of different surgeons under influence of surrounding soft tissue. Methods First, a measuring system, consisting of a prosthesis and a hammer, was developed. Both components are equipped with a piezoelectric force sensor. Initially, in situ experiments on human cadavers were carried out using this system in order to determine the actual assembly forces and to characterize the influence of human soft tissues. Afterwards, an in vitro model in the form of an artificial femur (Sawbones Europe AB, Malmo, Sweden) with implanted measuring stem embedded in gelatine was developed. The gelatine mixture was chosen in such a way that assembly forces applied to the model corresponded to those in situ. A study involving 31 surgeons was carried out on the aforementioned in vitro model, in which the assembly forces were determined. Results A model was developed, with the influence of human soft tissues being taken into account. The assembly forces measured on the in vitro model were, on average, 2037.2 N ± 724.9 N, ranging from 822.5 N to 3835.2 N. The comparison among the surgeons showed no significant differences in sex (P = 0.09), work experience (P = 0.71) and number of THAs performed per year (P = 0.69). Conclusions All measured assembly forces were below 4 kN, which is recommended in the literature. This could lead to increased corrosion following fretting in the head-neck interface. In addition, there was a very wide range of assembly forces among the surgeons, although other influencing factors such as different implant sizes or materials were not taken into account. To ensure optimal assembly force, the impaction should be standardized, e.g., by using an appropriate surgical instrument.


Author(s):  
Hossein Amirjamshidi ◽  
Jude S. Sauer ◽  
Bryan Barrus ◽  
Peter A. Knight ◽  
Sunil M. Prasad

Objective Bilateral internal thoracic artery (BITA) bypass can enable more complete arterial revascularization procedures. Minimally invasive cardiac surgery (MICS) can offer significant patient benefits. New minimally invasive technology for sternal retraction and tissue manipulation is needed to enable ergonomic and reliable minimally invasive ITA harvesting. The goal of this research was to develop technology and techniques, along with experimental testing and training models, for a sternal-sparing approach to in situ BITA harvesting through a small subxiphoid access site. Methods This study focused on optimizing custom equipment and methods for subxiphoid BITA harvesting initially in a porcine model (19 pig carcasses, 36 ITAs) and subsequently in 7 cadavers (14 ITAs). Results Fifty consecutive ITAs were successfully harvested using this remote access approach. The last 20 ITA specimens harvested from the porcine model were explanted and measured; the average length of the free ITA grafts was 12.8 ± 0.9 cm (range 10.8 to 14.2 cm) with a mean time of 23.3 ± 5.2 minutes (range 13 to 25 minutes) for each harvest. Conclusions Early results demonstrate that both ITAs can be reliably harvested in a skeletonized fashion in situ through sternal-sparing, small subxiphoid access in 2 experimental models. This innovative approach warrants further exploration toward facilitating complete arterial revascularization and the further adoption of minimally invasive coronary artery bypass graft surgery.


Author(s):  
Liang Fang ◽  
Yanping Xie ◽  
Peiyin Guo ◽  
Jingpei Zhu ◽  
Shuhui Xiao ◽  
...  

Vertical NiPS3 nanosheets in situ grown on conducting nickel foam were fabricated by a facile one-step chemical vapor transport method and used as an efficient bifunctional catalyst for overall water splitting.


2016 ◽  
Vol 113 (28) ◽  
pp. 7722-7726 ◽  
Author(s):  
Gavin O. Jones ◽  
Alexander Yuen ◽  
Rudy J. Wojtecki ◽  
James L. Hedrick ◽  
Jeannette M. García

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.


2014 ◽  
Vol 6 (10) ◽  
pp. 7214-7222 ◽  
Author(s):  
Ju-Won Jeon ◽  
Ronish Sharma ◽  
Praveen Meduri ◽  
Bruce W. Arey ◽  
Herbert T. Schaef ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document