scholarly journals Machine Learning Applications in the Evaluation and Management of Psoriasis: A Systematic Review

2020 ◽  
Vol 5 (4) ◽  
pp. 147-159
Author(s):  
Kimberley Yu ◽  
Maha N. Syed ◽  
Elena Bernardis ◽  
Joel M. Gelfand

Background: Machine learning (ML), a subset of artificial intelligence (AI) that aims to teach machines to automatically learn tasks by inferring patterns from data, holds significant promise to aid psoriasis care. Applications include evaluation of skin images for screening and diagnosis as well as clinical management including treatment and complication prediction. Objective: To summarize literature on ML applications to psoriasis evaluation and management and to discuss challenges and opportunities for future advances. Methods: We searched MEDLINE, Google Scholar, ACM Digital Library, and IEEE Xplore for peer-reviewed publications published in English through December 1, 2019. Our search queries identified publications with any of the 10 computing-related keywords and “psoriasis” in the title and/or abstract. Results: Thirty-three studies were identified. Articles were organized by topic and synthesized as evaluation- or management-focused articles covering 5 content categories: (A) Evaluation using skin images: (1) identification and differential diagnosis of psoriasis lesions, (2) lesion segmentation, and (3) lesion severity and area scoring; (B) clinical management: (1) prediction of complications and (2) treatment. Conclusion: Machine learning has significant potential to aid psoriasis evaluation and management. Current topics popular in ML research on psoriasis are the evaluation of medical images, prediction of complications, and treatment discovery. For patients to derive the greatest benefit from ML advancements, it is helpful for dermatologists to have an understanding of ML and how it can effectively aid their assessments and decision-making.

2020 ◽  
Vol 35 (33) ◽  
pp. 2043005
Author(s):  
Fernanda Psihas ◽  
Micah Groh ◽  
Christopher Tunnell ◽  
Karl Warburton

Neutrino experiments study the least understood of the Standard Model particles by observing their direct interactions with matter or searching for ultra-rare signals. The study of neutrinos typically requires overcoming large backgrounds, elusive signals, and small statistics. The introduction of state-of-the-art machine learning tools to solve analysis tasks has made major impacts to these challenges in neutrino experiments across the board. Machine learning algorithms have become an integral tool of neutrino physics, and their development is of great importance to the capabilities of next generation experiments. An understanding of the roadblocks, both human and computational, and the challenges that still exist in the application of these techniques is critical to their proper and beneficial utilization for physics applications. This review presents the current status of machine learning applications for neutrino physics in terms of the challenges and opportunities that are at the intersection between these two fields.


2019 ◽  
Vol 73 (12) ◽  
pp. 1012-1017
Author(s):  
Andrea M. Burden

Pharmacoepidemiology is the study of the safety and effectiveness of medications following market approval. The increased availability and size of healthcare utilization databases allows for the study of rare adverse events, sub-group analyses, and long-term follow-up. These datasets are large, including thousands of patient records spanning multiple years of observation, and representative of real-world clinical practice. Thus, one of the main advantages is the possibility to study the real-world safety and effectiveness of medications in uncontrolled environments. Due to the large size (volume), structure (variety), and availability (velocity) of observational healthcare databases there is a large interest in the application of natural language processing and machine learning, including the development of novel models to detect drug–drug interactions, patient phenotypes, and outcome prediction. This report will provide an overview of the current challenges in pharmacoepidemiology and where machine learning applications may be useful for filling the gap.


Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


2021 ◽  
Vol 3 (2) ◽  
pp. 392-413
Author(s):  
Stefan Studer ◽  
Thanh Binh Bui ◽  
Christian Drescher ◽  
Alexander Hanuschkin ◽  
Ludwig Winkler ◽  
...  

Machine learning is an established and frequently used technique in industry and academia, but a standard process model to improve success and efficiency of machine learning applications is still missing. Project organizations and machine learning practitioners face manifold challenges and risks when developing machine learning applications and have a need for guidance to meet business expectations. This paper therefore proposes a process model for the development of machine learning applications, covering six phases from defining the scope to maintaining the deployed machine learning application. Business and data understanding are executed simultaneously in the first phase, as both have considerable impact on the feasibility of the project. The next phases are comprised of data preparation, modeling, evaluation, and deployment. Special focus is applied to the last phase, as a model running in changing real-time environments requires close monitoring and maintenance to reduce the risk of performance degradation over time. With each task of the process, this work proposes quality assurance methodology that is suitable to address challenges in machine learning development that are identified in the form of risks. The methodology is drawn from practical experience and scientific literature, and has proven to be general and stable. The process model expands on CRISP-DM, a data mining process model that enjoys strong industry support, but fails to address machine learning specific tasks. The presented work proposes an industry- and application-neutral process model tailored for machine learning applications with a focus on technical tasks for quality assurance.


Author(s):  
Sumi Helal ◽  
Flavia C. Delicato ◽  
Cintia B. Margi ◽  
Satyajayant Misra ◽  
Markus Endler

2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


Sign in / Sign up

Export Citation Format

Share Document