scholarly journals Extracellular matrix components of the mouse thymus microenvironment: ontogenetic studies and modulation by glucocorticoid hormones.

1991 ◽  
Vol 39 (11) ◽  
pp. 1539-1546 ◽  
Author(s):  
J Lannes-Vieira ◽  
M Dardenne ◽  
W Savino

The present investigation was an ontogenetic study on the distribution of extracellular matrix (ECM) components in the thymic microenvironment of C57BL/6 mice (comprising young and old adults and developing embryos) and NZB mice. In addition, we evaluated the in vivo and in vitro influence of hydrocortisone treatment on basement membrane protein production by a thymic epithelial cell line. In young normal animals, Type I collagen was restricted to the interstitial spaces of the capsule and septa, where Type IV collagen, fibronectin, and laminin could be detected in the basement membranes. In addition, fibronectin-containing fibers were seen within the medulla of the thymic lobules. The ECM distribution pattern in the developing embryos was distinct from that observed in adults, since a fine meshwork of basement membrane-containing proteins was clearly seen throughout the parenchyma. Moreover, aging normal and NZB mice exhibited a denser ECM pattern than young adult normal animals. Treatment with hydrocortisone, both in vivo and in vitro, resulted in enhancement of ECM expression, detected in mice as early as 2 hr post injection and lasting for several days. Considering that the fluctuations of ECM expression parallel important events in thymocyte differentiation, we discuss the possibility that the two phenomena may be associated.

1990 ◽  
Vol 110 (4) ◽  
pp. 1405-1415 ◽  
Author(s):  
C H Streuli ◽  
M J Bissell

Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.


2020 ◽  
Author(s):  
Shinji Iizuka ◽  
Ronald P. Leon ◽  
Kyle P. Gribbin ◽  
Ying Zhang ◽  
Jose Navarro ◽  
...  

ABSTRACTThe scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native type I collagen, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, collagen I, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.


1995 ◽  
Vol 4 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Claudia Sondermann Freitas ◽  
Jurandy Susana Patricia O'Campo Lyra ◽  
Sergio Ranto Dalmau ◽  
Wilson Savino

Increasing evidence reveals that extracellular matrix components can be regarded as a group of mediators in intrathymic T-cell migration and/or differentiation. Yet, little is kown about the expression and putative function of one particular extracellular matrix protein, namely, tenascin in the thymus. Herein we investigated, by means of immunocytochemistry, tenascin expression in normal infant and fetal human thymuses, as well as in cultures of thymic microenvironmental cells.In situ, tenascin distribution is restricted to the medulla and cortico-medullary regions of normal thymuses. This pattern thus differed from that of fibronectin, laminin and type IV collagen, in which subseptal basement membranes were strongly labeled. Interestingly, tenascin did not co-localize with the cytokeratin-defined thymic epithelial cell network. This was in keeping with thein vitrodata showing that tenascin-bearing cells were nonepithelial (and probably nonfibroblastic) microenvironmental elements.Studies with fetal thymuses revealed a developmentally regulated expression of tenascin, with a faint but consistent network labeling, in thymic rudiments as early as 12 weeks of gestational age, that progressed to a strong TN expression at 18 weeks of fetal development, which was similar to the distribution pattern observed thereafter, including postnatally.Our results clearly indicated that tenascin is constitutively expressed in the human thymus, since early stages of thymic ontogeny, and suggest that the cell type responsible for its secretion is a nonepithelial microenvironmental cell.


2019 ◽  
Vol 33 (10) ◽  
pp. 1301-1313
Author(s):  
Wei Fu ◽  
Peng Xu ◽  
Bei Feng ◽  
Yang Lu ◽  
Jie Bai ◽  
...  

The biocompatibility and bioactivity of injectable acellular extracellular matrix nominates its use as an optimal candidate for cell delivery, serving as a reconstructive scaffold. In this study, we investigated the feasibility of preparing a blood vessel matrix (BVM) hydrogel, which revealed its pro-angiogenic effects in vitro and its therapeutic effects in an in vivo skin flap model. Aortic and abdominal aortic arteries from pigs were acellularized by Triton-X 100 and confirmed by hematoxylin and eosin and 4,6-diamidino-2-phenylindole staining. Different concentrations of blood vessel matrix hydrogel were generated successfully through enzymatic digestion, neutralization, and gelation. Hematoxylin and eosin staining, Masson’s trichrome staining, collagen type I immunohistochemistry staining, and enzyme-linked immunosorbent assays showed that type I collagen and some growth factors were retained in the hydrogel. Scanning electron microscopy demonstrated the different diametric fibrils in blood vessel matrix hydrogels. A blood vessel matrix hydrogel-coated plate promoted the tube formation of human umbilical vein endothelial cells in vitro. After injection into skin flaps, the hydrogel improved the flap survival rate and increased blood perfusion and capillary density. These results indicated that we successfully prepared a blood vessel matrix hydrogel and demonstrated its general characteristics and angiogenic effects in vitro and in vivo.


2020 ◽  
Author(s):  
Mingxing Ouyang ◽  
Jiun-Yann Yu ◽  
Yenyu Chen ◽  
Linhong Deng ◽  
Chin-Lin Guo

AbstractIn vivo, cells are surrounded by extracellular matrix (ECM). To build organs from single cells, it is generally believed that ECM serves as a large-scale scaffold to coordinate cell positioning and differentiation. Nevertheless, how cells utilize cell-ECM interactions to spatiotemporally coordinate their positioning and differentiation to different ECM at the whole-tissue scale is not fully understood. Here, using in vitro assay with engineered MDCK cells co-expressing H2B-mCherry (nucleus) and gp135 (Podocalyxin)-GFP (apical marker), we show that such spatiotemporal coordination for epithelial morphogenesis and polarization can be initiated and determined by cell-soluble ECM interaction in the fluidic phase. The coordination depends on the native topology of ECM components such as sheet-like basement membrane (BM, mimicked by Matrigel in experiments) and linear fiber-like type I collagen (COL). Two types of coordination are found: scaffold formed by BM (COL) facilitates a close-ended (open-ended) coordination that leads to the formation of lobular (tubular) epithelium, where polarity is preserved throughout the entire lobule/tubule. During lobular formation with BM, polarization of individual cells within the same cluster occurs almost simultaneously, whereas the apicobasal polarization in the presence of COL can start at local regions and proceed in a collective way along the axis of tubule, which might suggest existence of intercellular communications at the cell-population level. Further, in the fluidic phase, we found that cells can form apicobasal polarity throughout the entire lobule/tubule without a complete coverage of ECM at the basal side. Based on reconstructions from time-lapse confocal imaging, this is likely derived from polarization occurring at early stage and being maintained through growth of the epithelial structures. Under suspension culture with COL, the polarization was impaired with formation of multi-lumens on the tubes, implying the importance of ECM microenvironment for tubulogenesis. Our results suggest a mechanism for cells to form polarity and coordinate positioning in vivo, and a strategy for engineering epithelial structures through cell-soluble ECM interaction and self-assembly in vitro.


1985 ◽  
Vol 33 (7) ◽  
pp. 655-664 ◽  
Author(s):  
S Berrih ◽  
W Savino ◽  
S Cohen

The immunohistochemical detection of elements of the human thymic extracellular matrix in situ and in vitro is described. In the normal thymus, the intracapsular and intraseptal fibers were strongly labeled by anti-type I collagen antiserum. Basement membranes bordering the capsule, septae, and perivascular spaces were intensely stained by anti-type IV collagen, anti-fibronectin, and anti-laminin sera. In hyperplastic myasthenia gravis thymuses, the major changes consisted of discontinuities of the basement membrane adjacent to clusters of epithelial (keratin-containing) cells, among which an unusual connective framework (densely labeled by all the antisera) was observed. In vitro, most epithelial cells were strongly labeled by antifibronectin serum and to a lesser extent by the anti-type IV collagen and anti-laminin sera. In addition, fibronectin, laminin, and type IV collagen were detected in the intercellular spaces bordering the epithelial cells in culture. Results show that thymic epithelial cells participate in the synthesis of extracellular matrix elements, which as a result of their localization and influence on epithelial cell growth, should be regarded as constitutive components of the thymic microenvironment.


1985 ◽  
Vol 101 (4) ◽  
pp. 1511-1522 ◽  
Author(s):  
M A Hadley ◽  
S W Byers ◽  
C A Suárez-Quian ◽  
H K Kleinman ◽  
M Dym

Sertoli cell preparations isolated from 10-day-old rats were cultured on three different substrates: plastic, a matrix deposited by co-culture of Sertoli and peritubular myoid cells, and a reconstituted basement membrane gel from the EHS tumor. When grown on plastic, Sertoli cells formed a squamous monolayer that did not retain contaminating germ cells. Grown on the matrix deposited by Sertoli-myoid cell co-cultures, Sertoli cells were more cuboidal and supported some germ cells but did not allow them to differentiate. After 3 wk however, the Sertoli cells flattened to resemble those grown on plastic. In contrast, the Sertoli cells grown on top of the reconstituted basement membrane formed polarized monolayers virtually identical to Sertoli cells in vivo. They were columnar with an elaborate cytoskeleton. In addition, they had characteristic basally located tight junctions and maintained germ cells for at least 5 wk in the basal aspect of the monolayer. However, germ cells did not differentiate. Total protein, androgen binding protein, transferrin, and type I collagen secretion were markedly greater when Sertoli cells were grown on the extracellular matrices than when they were grown on plastic. When Sertoli cells were cultured within rather than on top of reconstituted basement membrane gels they reorganized into cords. After one week, tight junctional complexes formed between adjacent Sertoli cells, functionally compartmentalizing the cords into central (adluminal) and peripheral (basal) compartments. Germ cells within the cords continued to differentiate. Thus, Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells. Growing Sertoli cells within reconstituted basement membrane gels induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaodong Feng ◽  
Marcia G. Tonnesen ◽  
Shaker A. Mousa ◽  
Richard A. F. Clark

Angiogenesis is a highly regulated event involving complex, dynamic interactions between microvascular endothelial cells and extracellular matrix (ECM) proteins. Alteration of ECM composition and architecture is a hallmark feature of wound clot and tumor stroma. We previously reported that during angiogenesis, endothelial cell responses to growth factors are modulated by the compositional and mechanical properties of a surrounding three-dimensional (3D) extracellular matrix (ECM) that is dominated by either cross-linked fibrin or type I collagen. However, the role of 3D ECM in the regulation of angiogenesis associated with wound healing and tumor growth is not well defined. This study investigates the correlation of sprout angiogenesis and ECM microenvironment using in vivo and in vitro 3D angiogenesis models. It demonstrates that fibrin and type I collagen 3D matrices differentially but synergistically regulate sprout angiogenesis. Thus blocking both integrin alpha v beta 3 and integrin alpha 2 beta 1 might be a novel strategy to synergistically block sprout angiogenesis in solid tumors.


1985 ◽  
Vol 73 (1) ◽  
pp. 19-32
Author(s):  
W.C. Young ◽  
I.M. Herman

We utilized fluorescence microscopy and affinity-purified antibodies to probe the form and function of cytoplasmic actin in endothelial cells (EC) recovering from injury and grown on extracellular matrices in vitro. Bovine aortic EC were seeded onto glass microscope coverslips that had been coated with either BSA, fibronectin, type I and III (interstitial) collagens, type IV (basement membrane) collagen or gelatin. After EC that had been grown on glass, glass-BSA or extracellular matrix-coated coverslips reached confluence, a 300–400 micron zone of cells was mechanically removed to stimulate EC migration and proliferation. Post-injury EC movements were monitored with time-lapse, phase-contrast videomicrography before fixation for actin localization with fluorescence microscopy using affinity-purified antibodies. We found that the number of stress fibres within EC was inversely proportional to the rate of movement; and, the rates of movement for EC grown on glass or glass-BSA were approximately eight times faster than EC grown on gelatin or type IV collagen (X velocity = 0.5 micron/min versus 0.06 micron/min). EC movements on fibronectin and interstitial collagens were similar (X velocity = 0.2 micron/min). These results suggest that extracellular matrix molecules modulate EC stress fibre expression, thereby producing alterations in the cytoskeleton and the resultant EC movements that follow injury in vitro. Moreover, the induction of stress fibres in the presence of basement membrane (type IV) collagen may explain the failure of aortic EC to migrate and repopulate wounded regions of intima during atherogenesis in vivo.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Sign in / Sign up

Export Citation Format

Share Document